コード例 #1
0
    def test_simple_paraboloid_equality(self):

        prob = Problem()
        root = prob.root = Group()

        root.add("p1", ParamComp("x", 50.0), promotes=["*"])
        root.add("p2", ParamComp("y", 50.0), promotes=["*"])
        root.add("comp", Paraboloid(), promotes=["*"])
        root.add("con", ExecComp("c = 15.0 - x + y"), promotes=["*"])

        prob.driver = ScipyOptimizer()
        prob.driver.options["optimizer"] = "SLSQP"
        prob.driver.options["tol"] = 1.0e-8
        prob.driver.add_param("x", low=-50.0, high=50.0)
        prob.driver.add_param("y", low=-50.0, high=50.0)

        prob.driver.add_objective("f_xy")
        prob.driver.add_constraint("c", ctype="ineq")

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob["x"], 7.16667, 1e-6)
        assert_rel_error(self, prob["y"], -7.833334, 1e-6)
コード例 #2
0
    def test_simple_paraboloid_constrained_COBYLA_upper(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', IndepVarComp('x', 50.0), promotes=['*'])
        root.add('p2', IndepVarComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('con', ExecComp('c = y - x'), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'COBYLA'
        prob.driver.options['tol'] = 1.0e-8
        prob.driver.add_desvar('x', low=-50.0, high=50.0)
        prob.driver.add_desvar('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.add_constraint('c', upper=-15.0)
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['x'], 7.16667, 1e-6)
        assert_rel_error(self, prob['y'], -7.833334, 1e-6)
コード例 #3
0
    def test_index_array_param(self):

        prob = Problem()
        prob.root = SellarStateConnection()
        prob.driver = ScipyOptimizer()

        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z', low=np.array([-10.0]), high=np.array([10.0]),
                              indices=[0])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob['z'][1] = 5.0
        prob.run()

        assert_rel_error(self, prob['z'][0], 0.1005, 1e-3)
        assert_rel_error(self, prob['z'][1], 5.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
コード例 #4
0
    def test_index_error_messages_con(self):

            prob = Problem()
            prob.root = Group()
            prob.root.fd_options['force_fd'] = True
            prob.root.ln_solver.options['mode'] = 'auto'

            prob.root.add('myparams', IndepVarComp('x', np.zeros(4)))
            prob.root.add('rosen', Rosenbrock(4))

            prob.root.connect('myparams.x', 'rosen.x')

            prob.driver = MySimpleDriver()
            prob.driver.add_desvar('myparams.x')
            prob.driver.add_constraint('rosen.xxx', upper=0.0, indices=[4])

            prob.setup(check=False)

            # Make sure we can't do this
            with self.assertRaises(IndexError) as cm:
                prob.run()

            msg = "Index for constraint 'rosen.xxx' is out of bounds. "
            msg += "Requested index: [4], "
            msg += "shape: (4,)."
            raised_error = str(cm.exception)
            raised_error = raised_error.replace('(4L,', '(4,')
            self.assertEqual(msg, raised_error)
コード例 #5
0
    def test_index_error_messages_con(self):

        prob = Problem()
        prob.root = Group()
        prob.root.fd_options['force_fd'] = True
        prob.root.ln_solver.options['mode'] = 'auto'

        prob.root.add('myparams', ParamComp('x', np.zeros(4)))
        prob.root.add('rosen', Rosenbrock(4))

        prob.root.connect('myparams.x', 'rosen.x')

        prob.driver = MySimpleDriver()
        prob.driver.add_param('myparams.x')
        prob.driver.add_constraint('rosen.xxx', indices=[4])

        prob.setup(check=False)

        # Make sure we can't do this
        with self.assertRaises(IndexError) as cm:
            prob.run()

        msg = "Index for constraint 'rosen.xxx' is out of bounds. "
        msg += "Requested index: [4], "
        msg += "Parameter shape: (4,)."
        raised_error = str(cm.exception)
        raised_error = raised_error.replace('(4L,', '(4,')
        self.assertEqual(msg, raised_error)
コード例 #6
0
    def test_eq_ineq_error_messages(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()

        # Don't try this at home, kids
        prob.driver.supports['equality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', ctype='eq')

        self.assertEqual(
            str(cm.exception),
            "Driver does not support equality constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['inequality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', ctype='ineq')

        self.assertEqual(
            str(cm.exception),
            "Driver does not support inequality constraint 'con1'.")
コード例 #7
0
ファイル: profile_mppt.py プロジェクト: thearn/CADRE
def run(typ="adjoint", m=300):
    t = time.time()
    model = Problem(impl=impl)
    model.root = MPPT_MDP(m)

    # add optimizer
    model.driver = pyOptSparseDriver()
    model.driver.options['optimizer'] = "SNOPT"
    model.driver.options['print_results'] = False
    model.driver.opt_settings = {
        'Major optimality tolerance': 1e-3,
        'Major feasibility tolerance': 1.0e-5,
        'Iterations limit': 500000000,
        "Verify level" : -1
    }
    model.driver.add_objective("perf.result")
    model.driver.add_desvar("pt0.param.CP_Isetpt", lower=0., upper=0.4)
    #model.driver.add_desvar("pt1.param.CP_Isetpt", lower=0., upper=0.4)

    if typ == "fd":
        model.root.fd_options['force_fd'] = True

    elif typ == "fwd":
        model.root.ln_solver.options['mode'] = "fwd"
    else:
        model.root.ln_solver.options['mode'] = "rev"

    model.setup(check=False)
    model.run()

    #os.rename("SNOPT_summary.out", "SNOPT_summary_%s_%d.out" % (typ, m))

    return time.time() - t
コード例 #8
0
    def test_simple_paraboloid_equality(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('con', ExecComp('c = 15.0 - x + y'), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.add_constraint('c', ctype='ineq')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['x'], 7.16667, 1e-6)
        assert_rel_error(self, prob['y'], -7.833334, 1e-6)
コード例 #9
0
    def test_driver_param_indices_snopt(self):
        """ Test driver param indices with pyOptSparse and force_fd=False

        """

        prob = Problem()
        prob.root = SellarStateConnection()
        prob.root.fd_options['force_fd'] = False

        prob.driver = pyOptSparseDriver()

        prob.driver.add_desvar('z', low=np.array([-10.0]),
                              high=np.array([10.0]),indices=[0])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.setup(check=False)

        prob['z'][1] = 0.0

        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
コード例 #10
0
    def test_Sellar_state_SLSQP(self):
        """ Baseline Sellar test case without specifying indices.
        """

        prob = Problem()
        prob.root = SellarStateConnection()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z', low=np.array([-10.0, 0.0]),
                             high=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
コード例 #11
0
    def test_simple_array_comp(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', np.zeros([2])), promotes=['*'])
        root.add('comp', SimpleArrayComp(), promotes=['*'])
        root.add('con',
                 ExecComp('c = y - 20.0',
                          c=np.array([0.0, 0.0]),
                          y=np.array([0.0, 0.0])),
                 promotes=['*'])
        root.add('obj',
                 ExecComp('o = y[0]', y=np.array([0.0, 0.0])),
                 promotes=['*'])

        prob.driver = pyOptSparseDriver()
        prob.driver.add_param('x', low=-50.0, high=50.0)

        prob.driver.add_objective('o')
        prob.driver.add_constraint('c', ctype='eq')

        prob.setup(check=False)
        prob.run()

        obj = prob['o']
        assert_rel_error(self, obj, 20.0, 1e-6)
コード例 #12
0
    def test_simple_paraboloid_equality(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('con', ExecComp('c = 15.0 - x + y'), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.add_constraint('c', ctype='ineq')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['x'], 7.16667, 1e-6)
        assert_rel_error(self, prob['y'], -7.833334, 1e-6)
コード例 #13
0
    def test_driver_param_indices_slsqp_force_fd(self):
        """ Test driver param indices with ScipyOptimizer SLSQP and force_fd=True


        """

        prob = Problem()
        prob.root = SellarStateConnection()
        prob.root.fd_options['force_fd'] = True

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z', low=np.array([-10.0]),
                              high=np.array([10.0]),indices=[0])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        #prob.driver.options['disp'] = False

        prob.setup(check=False)

        prob['z'][1] = 0.0

        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
コード例 #14
0
    def test_simple_array_comp2D(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', np.zeros((2, 2))), promotes=['*'])
        root.add('comp', ArrayComp2D(), promotes=['*'])
        root.add('con',
                 ExecComp('c = y - 20.0',
                          c=np.zeros((2, 2)),
                          y=np.zeros((2, 2))),
                 promotes=['*'])
        root.add('obj',
                 ExecComp('o = y[0, 0]', y=np.zeros((2, 2))),
                 promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.add_param('x', low=-50.0, high=50.0)

        prob.driver.add_objective('o')
        prob.driver.add_constraint('c', ctype='eq')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        obj = prob['o']
        assert_rel_error(self, obj, 20.0, 1e-6)
コード例 #15
0
    def test_rosenbrock(self):

        prob = Problem()
        root = prob.root = Group()
        root.add("rosen", Rosenbrock(), promotes=["x", "obj"])
        root.add("desvars", IndepVarComp("x", np.ones(2) * -1.0), promotes=["x"])
        prob.driver = KonaOptimizer()
        prob.driver.options["algorithm"] = ReducedSpaceQuasiNewton
        # prob.driver.options['algorithm'] = Verifier

        optns = {
            "verify": {
                "primal_vec": True,
                "state_vec": True,
                "dual_vec": True,
                "gradients": True,
                "pde_jac": True,
                "cnstr_jac": True,
                "red_grad": True,
                "lin_solve": True,
                "out_file": sys.stdout,  # 'kona_verify.dat',
            }
        }
        prob.driver.options["algorithm_options"] = optns

        prob.driver.add_desvar("x")
        prob.driver.add_objective("obj")

        prob.setup(check=False)
        prob.run()
        assert_rel_error(self, prob["x"], np.ones(2), 1e-5)
コード例 #16
0
    def test_Sellar_state_SLSQP(self):

        prob = Problem()
        prob.root = SellarStateConnection()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_param('z',
                              low=np.array([-10.0, 0.0]),
                              high=np.array([10.0, 10.0]))
        prob.driver.add_param('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1')
        prob.driver.add_constraint('con2')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
コード例 #17
0
    def test_record_derivs_dicts(self):

        if OPT is None:
            raise unittest.SkipTest("pyoptsparse is not installed")

        if OPTIMIZER is None:
            raise unittest.SkipTest(
                "pyoptsparse is not providing SNOPT or SLSQP")

        prob = Problem()
        prob.root = SellarDerivativesGrouped()

        prob.driver = pyOptSparseDriver()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.opt_settings['ACC'] = 1e-9
        prob.driver.options['print_results'] = False

        prob.driver.add_desvar('z',
                               lower=np.array([-10.0, 0.0]),
                               upper=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', lower=0.0, upper=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        self.recorder.options['record_derivs'] = True
        prob.setup(check=False)

        prob.run()

        prob.cleanup()

        hdf = h5py.File(self.filename, 'r')

        deriv_group = hdf['rank0:SLSQP|1']['Derivs']

        self.assertEqual(deriv_group.attrs['success'], 1)
        self.assertEqual(deriv_group.attrs['msg'], '')

        J1 = deriv_group['Derivatives']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J1[key1][key2][:], val2, .00001)

        hdf.close()
コード例 #18
0
ファイル: test_hdf5.py プロジェクト: Satadru-Roy/OpenMDAO
    def test_record_derivs_dicts(self):

        if OPT is None:
            raise unittest.SkipTest("pyoptsparse is not installed")

        if OPTIMIZER is None:
            raise unittest.SkipTest("pyoptsparse is not providing SNOPT or SLSQP")

        prob = Problem()
        prob.root = SellarDerivativesGrouped()

        prob.driver = pyOptSparseDriver()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.opt_settings['ACC'] = 1e-9
        prob.driver.options['print_results'] = False

        prob.driver.add_desvar('z', lower=np.array([-10.0, 0.0]),
                             upper=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', lower=0.0, upper=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        self.recorder.options['record_derivs'] = True
        prob.setup(check=False)

        prob.run()

        prob.cleanup()

        hdf = h5py.File(self.filename, 'r')

        deriv_group = hdf['rank0:SLSQP|1']['Derivs']

        self.assertEqual(deriv_group.attrs['success'],1)
        self.assertEqual(deriv_group.attrs['msg'],'')

        J1 = deriv_group['Derivatives']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421 ])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J1[key1][key2][:], val2, .00001)


        hdf.close()
コード例 #19
0
    def test_simple_driver_recording(self, m):
        self.setup_endpoints(m)
        recorder = WebRecorder(self._accepted_token, suppress_output=True)

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*'])
        model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*'])
        model.add_subsystem('comp', Paraboloid(), promotes=['*'])
        model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*'])

        model.suppress_solver_output = True

        prob.driver = pyOptSparseDriver()

        prob.driver.add_recorder(recorder)
        prob.driver.recording_options['record_desvars'] = True
        prob.driver.recording_options['record_responses'] = True
        prob.driver.recording_options['record_objectives'] = True
        prob.driver.recording_options['record_constraints'] = True

        prob.driver.options['optimizer'] = OPTIMIZER
        if OPTIMIZER == 'SLSQP':
            prob.driver.opt_settings['ACC'] = 1e-9

        model.add_design_var('x', lower=-50.0, upper=50.0)
        model.add_design_var('y', lower=-50.0, upper=50.0)
        model.add_objective('f_xy')
        model.add_constraint('c', upper=-15.0)
        prob.setup(check=False)

        t0, t1 = run_driver(prob)

        prob.cleanup()

        driver_iteration_data = json.loads(self.driver_iteration_data)

        expected_desvars = [
            {'name': 'p1.x', 'values': [7.1666666]},
            {'name': 'p2.y', 'values': [-7.8333333]}
        ]

        expected_objectives = [
            {'name': 'comp.f_xy', 'values': [-27.083333]}
        ]

        expected_constraints = [
            {'name': 'con.c', 'values': [-15.0]}
        ]

        for d in expected_desvars:
            self.assert_array_close(d, driver_iteration_data['desvars'])

        for o in expected_objectives:
            self.assert_array_close(o, driver_iteration_data['objectives'])

        for c in expected_constraints:
            self.assert_array_close(c, driver_iteration_data['constraints'])
コード例 #20
0
    def test_exponential_constrained_ieq(self):

        prob = Problem()
        root = prob.root = Group()
        root.add("sc", ExponentialConstrained(), promotes=["x", "f", "h"])
        root.add("desvars", IndepVarComp("x", np.array([1.0, 1.0])), promotes=["x"])
        prob.driver = KonaOptimizer()

        prob.driver.add_desvar("x")
        # TODO report bug if this variable is promoted
        prob.driver.add_objective("f")
        prob.driver.add_constraint("h", lower=0)

        prob.driver.options["algorithm"] = ConstrainedRSNK
        # prob.driver.options['algorithm'] = Verifier

        optns = {
            "info_file": "kona_info.dat",
            "max_iter": 30,
            "primal_tol": 1e-5,
            "constraint_tol": 1e-5,
            "trust": {"init_radius": 1.0, "max_radius": 10.0, "min_radius": 1e-4},
            "aug_lag": {"mu_init": 1.0, "mu_pow": 0.5, "mu_max": 1e5},
            "reduced": {
                "precond": None,
                "product_fac": 0.001,
                "lambda": 0.0,
                "scale": 0.0,
                "nu": 0.95,
                "dynamic_tol": False,
            },
            "krylov": {"out_file": "kona_krylov.dat", "max_iter": 10, "rel_tol": 0.0095, "check_res": True},
            "verify": {
                "primal_vec": True,
                "state_vec": True,
                "dual_vec": True,
                "gradients": True,
                "pde_jac": True,
                "cnstr_jac": True,
                "red_grad": True,
                "lin_solve": True,
                "out_file": sys.stdout,  # 'kona_verify.dat',
            },
        }

        prob.driver.options["algorithm_options"] = optns

        prob.setup(check=False)
        prob.run()
        # print(prob['x'])
        assert_rel_error(self, prob["x"], np.zeros(2), 1e-5)
コード例 #21
0
    def test_record_derivs_lists(self):
        prob = Problem()
        prob.root = SellarDerivativesGrouped()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8
        prob.driver.options['disp'] = False

        prob.driver.add_desvar('z',
                               lower=np.array([-10.0, 0.0]),
                               upper=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', lower=0.0, upper=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        self.recorder.options['record_derivs'] = True
        prob.setup(check=False)

        prob.run()

        prob.cleanup()

        hdf = h5py.File(self.filename, 'r')

        deriv_group = hdf['rank0:SLSQP|1']['Derivs']

        self.assertEqual(deriv_group.attrs['success'], 1)
        self.assertEqual(deriv_group.attrs['msg'], '')

        J1 = deriv_group['Derivatives']

        assert_rel_error(self, J1[0][0], 9.61001155, .00001)
        assert_rel_error(self, J1[0][1], 1.78448534, .00001)
        assert_rel_error(self, J1[0][2], 2.98061392, .00001)
        assert_rel_error(self, J1[1][0], -9.61002285, .00001)
        assert_rel_error(self, J1[1][1], -0.78449158, .00001)
        assert_rel_error(self, J1[1][2], -0.98061433, .00001)
        assert_rel_error(self, J1[2][0], 1.94989079, .00001)
        assert_rel_error(self, J1[2][1], 1.0775421, .00001)
        assert_rel_error(self, J1[2][2], 0.09692762, .00001)

        hdf.close()
コード例 #22
0
ファイル: test_hdf5.py プロジェクト: Satadru-Roy/OpenMDAO
    def test_record_derivs_lists(self):
        prob = Problem()
        prob.root = SellarDerivativesGrouped()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8
        prob.driver.options['disp'] = False

        prob.driver.add_desvar('z', lower=np.array([-10.0, 0.0]),
                             upper=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', lower=0.0, upper=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        self.recorder.options['record_derivs'] = True
        prob.setup(check=False)

        prob.run()

        prob.cleanup()

        hdf = h5py.File(self.filename, 'r')

        deriv_group = hdf['rank0:SLSQP|1']['Derivs']

        self.assertEqual(deriv_group.attrs['success'],1)
        self.assertEqual(deriv_group.attrs['msg'],'')

        J1 = deriv_group['Derivatives']

        assert_rel_error(self, J1[0][0], 9.61001155, .00001)
        assert_rel_error(self, J1[0][1], 1.78448534, .00001)
        assert_rel_error(self, J1[0][2], 2.98061392, .00001)
        assert_rel_error(self, J1[1][0], -9.61002285, .00001)
        assert_rel_error(self, J1[1][1], -0.78449158, .00001)
        assert_rel_error(self, J1[1][2], -0.98061433, .00001)
        assert_rel_error(self, J1[2][0], 1.94989079, .00001)
        assert_rel_error(self, J1[2][1], 1.0775421, .00001)
        assert_rel_error(self, J1[2][2], 0.09692762, .00001)

        hdf.close()
コード例 #23
0
    def test_mydriver(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_param('z', low=-100.0, high=100.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1')
        prob.driver.add_constraint('con2')

        prob.setup(check=False)
        prob.run()

        obj = prob['obj']
        self.assertLess(obj, 28.0)
コード例 #24
0
    def test_mydriver(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_desvar('z', low=-100.0, high=100.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.setup(check=False)
        prob.run()

        obj = prob['obj']
        self.assertLess(obj, 28.0)
コード例 #25
0
    def test_mydriver(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_param("z", low=-100.0, high=100.0)

        prob.driver.add_objective("obj")
        prob.driver.add_constraint("con1")
        prob.driver.add_constraint("con2")

        prob.setup(check=False)
        prob.run()

        obj = prob["obj"]
        self.assertLess(obj, 28.0)
コード例 #26
0
    def test_generate_numpydocstring(self):
        prob = Problem()
        prob.root = SellarStateConnection()
        prob.driver = ScipyOptimizer()

        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z', low=np.array([-10.0]), high=np.array([10.0]),
                              indices=[0])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        prob.driver.options['disp'] = False

        test_string = prob.driver.generate_docstring()
        original_string = '    """\n\n    Options\n    -------\n    options[\'disp\'] :  bool(False)\n        Set to False to prevent printing of Scipy convergence messages\n    options[\'maxiter\'] :  int(200)\n        Maximum number of iterations.\n    options[\'optimizer\'] :  str(\'SLSQP\')\n        Name of optimizer to use\n    options[\'tol\'] :  float(1e-08)\n        Tolerance for termination. For detailed control, use solver-specific options.\n\n    """\n'
        self.assertEqual(original_string, test_string)
コード例 #27
0
    def test_fan_out(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 1.0))
        root.add('p2', ParamComp('x', 1.0))

        root.add('comp1', ExecComp('y = 3.0*x'))
        root.add('comp2', ExecComp('y = 5.0*x'))

        root.add('obj', ExecComp('o = i1 + i2'))
        root.add('con1', ExecComp('c = 15.0 - x'))
        root.add('con2', ExecComp('c = 15.0 - x'))

        # hook up non explicitly
        root.connect('p1.x', 'comp1.x')
        root.connect('p2.x', 'comp2.x')
        root.connect('comp1.y', 'obj.i1')
        root.connect('comp2.y', 'obj.i2')
        root.connect('comp1.y', 'con1.x')
        root.connect('comp2.y', 'con2.x')

        prob.driver = pyOptSparseDriver()
        prob.driver.add_param('p1.x', low=-50.0, high=50.0)
        prob.driver.add_param('p2.x', low=-50.0, high=50.0)
        prob.driver.add_objective('obj.o')
        prob.driver.add_constraint('con1.c', ctype='eq')
        prob.driver.add_constraint('con2.c', ctype='eq')

        prob.setup(check=False)
        prob.run()

        obj = prob['obj.o']
        assert_rel_error(self, obj, 30.0, 1e-6)

        # Verify that pyOpt has the correct wrt names
        con1 = prob.driver.pyopt_solution.constraints['con1.c']
        self.assertEqual(con1.wrt, ['p1.x'])
        con2 = prob.driver.pyopt_solution.constraints['con2.c']
        self.assertEqual(con2.wrt, ['p2.x'])
コード例 #28
0
    def test_fan_out(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 1.0))
        root.add('p2', ParamComp('x', 1.0))

        root.add('comp1', ExecComp('y = 3.0*x'))
        root.add('comp2', ExecComp('y = 5.0*x'))

        root.add('obj', ExecComp('o = i1 + i2'))
        root.add('con1', ExecComp('c = 15.0 - x'))
        root.add('con2', ExecComp('c = 15.0 - x'))

        # hook up non explicitly
        root.connect('p1.x', 'comp1.x')
        root.connect('p2.x', 'comp2.x')
        root.connect('comp1.y', 'obj.i1')
        root.connect('comp2.y', 'obj.i2')
        root.connect('comp1.y', 'con1.x')
        root.connect('comp2.y', 'con2.x')

        prob.driver = pyOptSparseDriver()
        prob.driver.add_param('p1.x', low=-50.0, high=50.0)
        prob.driver.add_param('p2.x', low=-50.0, high=50.0)
        prob.driver.add_objective('obj.o')
        prob.driver.add_constraint('con1.c', ctype='eq')
        prob.driver.add_constraint('con2.c', ctype='eq')

        prob.setup(check=False)
        prob.run()

        obj = prob['obj.o']
        assert_rel_error(self, obj, 30.0, 1e-6)

        # Verify that pyOpt has the correct wrt names
        con1 = prob.driver.pyopt_solution.constraints['con1.c']
        self.assertEqual(con1.wrt, ['p1.x'])
        con2 = prob.driver.pyopt_solution.constraints['con2.c']
        self.assertEqual(con2.wrt, ['p2.x'])
コード例 #29
0
    def test_simple_array_comp2D_array_lo_hi(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', IndepVarComp('x', np.zeros((2, 2))), promotes=['*'])
        root.add('comp', ArrayComp2D(), promotes=['*'])
        root.add('con', ExecComp('c = y - 20.0', c=np.zeros((2, 2)), y=np.zeros((2, 2))), promotes=['*'])
        root.add('obj', ExecComp('o = y[0, 0]', y=np.zeros((2, 2))), promotes=['*'])

        prob.driver = pyOptSparseDriver()
        prob.driver.add_desvar('x', low=-50.0*np.ones((2, 2)), high=50.0*np.ones((2, 2)))

        prob.driver.add_objective('o')
        prob.driver.add_constraint('c', equals=0.0)

        prob.setup(check=False)
        prob.run()

        obj = prob['o']
        assert_rel_error(self, obj, 20.0, 1e-6)
コード例 #30
0
    def test_simple_array_comp(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', np.zeros([2])), promotes=['*'])
        root.add('comp', SimpleArrayComp(), promotes=['*'])
        root.add('con', ExecComp('c = y - 20.0', c=np.array([0.0, 0.0]), y=np.array([0.0, 0.0])), promotes=['*'])
        root.add('obj', ExecComp('o = y[0]', y=np.array([0.0, 0.0])), promotes=['*'])

        prob.driver = pyOptSparseDriver()
        prob.driver.add_param('x', low=-50.0, high=50.0)

        prob.driver.add_objective('o')
        prob.driver.add_constraint('c', ctype='eq')

        prob.setup(check=False)
        prob.run()

        obj = prob['o']
        assert_rel_error(self, obj, 20.0, 1e-6)
コード例 #31
0
    def test_eq_ineq_error_messages(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1')

        self.assertEqual(str(cm.exception), "Constraint 'con1' needs to define lower, upper, or equals.")

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', lower=0.0, upper=1.1, equals=2.2)

        self.assertEqual(str(cm.exception), "Constraint 'con1' cannot be both equality and inequality.")

        # Don't try this at home, kids
        prob.driver.supports['two_sided_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', lower=0.0, upper=1.1)

        self.assertEqual(str(cm.exception), "Driver does not support 2-sided constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['equality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', equals=0.0)

        self.assertEqual(str(cm.exception), "Driver does not support equality constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['inequality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', upper=0.0)

        self.assertEqual(str(cm.exception), "Driver does not support inequality constraint 'con1'.")
コード例 #32
0
    def test_eq_ineq_error_messages(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()

        # Don't try this at home, kids
        prob.driver.supports['Equality Constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', ctype='eq')

        self.assertEqual(str(cm.exception), "Driver does not support equality constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['Inequality Constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', ctype='ineq')

        self.assertEqual(str(cm.exception), "Driver does not support inequality constraint 'con1'.")
コード例 #33
0
    def test_Sellar_state_SLSQP(self):

        prob = Problem()
        prob.root = SellarStateConnection()

        prob.driver = ScipyOptimizer()
        prob.driver.options["optimizer"] = "SLSQP"
        prob.driver.options["tol"] = 1.0e-8

        prob.driver.add_param("z", low=np.array([-10.0, 0.0]), high=np.array([10.0, 10.0]))
        prob.driver.add_param("x", low=0.0, high=10.0)

        prob.driver.add_objective("obj")
        prob.driver.add_constraint("con1")
        prob.driver.add_constraint("con2")

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob["z"][0], 1.9776, 1e-3)
        assert_rel_error(self, prob["z"][1], 0.0, 1e-3)
        assert_rel_error(self, prob["x"], 0.0, 1e-3)
コード例 #34
0
ファイル: benchmark_mppt.py プロジェクト: thearn/CADRE
    def benchmark_mppt(self):
        model = Problem(impl=impl)
        model.root = MPPT_MDP()

        # add optimizer
        model.driver = pyOptSparseDriver()
        model.driver.options['optimizer'] = "SNOPT"
        model.driver.opt_settings = {
            'Major optimality tolerance': 1e-3,
            'Major feasibility tolerance': 1.0e-5,
            'Iterations limit': 500000000,
            'New basis file': 10
        }

        model.driver.add_objective("perf.result")
        model.driver.add_desvar("pt0.param.CP_Isetpt", lower=0., upper=0.4)
        model.driver.add_desvar("pt1.param.CP_Isetpt", lower=0., upper=0.4)

        model.setup(check=False)
        model.run()

        assert_rel_error(self, model["perf.result"], -9.4308562238E+03, 1e-6)
コード例 #35
0
    def test_simple_paraboloid_double_sided_high(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', IndepVarComp('x', 50.0), promotes=['*'])
        root.add('p2', IndepVarComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('con', ExecComp('c = x - y'), promotes=['*'])

        prob.driver = pyOptSparseDriver()
        prob.driver.add_desvar('x', low=-50.0, high=50.0)
        prob.driver.add_desvar('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.add_constraint('c', lower=10.0, upper=11.0)

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6)
コード例 #36
0
    def test_simple_array_comp2D(self):

        prob = Problem()
        root = prob.root = Group()

        root.add("p1", ParamComp("x", np.zeros((2, 2))), promotes=["*"])
        root.add("comp", ArrayComp2D(), promotes=["*"])
        root.add("con", ExecComp("c = y - 20.0", c=np.zeros((2, 2)), y=np.zeros((2, 2))), promotes=["*"])
        root.add("obj", ExecComp("o = y[0, 0]", y=np.zeros((2, 2))), promotes=["*"])

        prob.driver = ScipyOptimizer()
        prob.driver.options["optimizer"] = "SLSQP"
        prob.driver.add_param("x", low=-50.0, high=50.0)

        prob.driver.add_objective("o")
        prob.driver.add_constraint("c", ctype="eq")

        prob.setup(check=False)
        prob.run()

        obj = prob["o"]
        assert_rel_error(self, obj, 20.0, 1e-6)
コード例 #37
0
    def test_simple_paraboloid_unconstrained_SLSQP(self):

        prob = Problem()
        root = prob.root = Group()

        root.add("p1", ParamComp("x", 50.0), promotes=["*"])
        root.add("p2", ParamComp("y", 50.0), promotes=["*"])
        root.add("comp", Paraboloid(), promotes=["*"])

        prob.driver = ScipyOptimizer()
        prob.driver.options["optimizer"] = "SLSQP"
        prob.driver.add_param("x", low=-50.0, high=50.0)
        prob.driver.add_param("y", low=-50.0, high=50.0)

        prob.driver.add_objective("f_xy")

        prob.setup(check=False)
        prob.run()

        # Optimal solution (minimum): x = 6.6667; y = -7.3333
        assert_rel_error(self, prob["x"], 6.666667, 1e-6)
        assert_rel_error(self, prob["y"], -7.333333, 1e-6)
コード例 #38
0
    def test_simple_array_comp2D(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', np.zeros((2, 2))), promotes=['*'])
        root.add('comp', ArrayComp2D(), promotes=['*'])
        root.add('con', ExecComp('c = y - 20.0', c=np.zeros((2, 2)), y=np.zeros((2, 2))), promotes=['*'])
        root.add('obj', ExecComp('o = y[0, 0]', y=np.zeros((2, 2))), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.add_param('x', low=-50.0, high=50.0)

        prob.driver.add_objective('o')
        prob.driver.add_constraint('c', ctype='eq')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        obj = prob['o']
        assert_rel_error(self, obj, 20.0, 1e-6)
コード例 #39
0
    def test_simple_paraboloid_unconstrained_SLSQP(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        # Optimal solution (minimum): x = 6.6667; y = -7.3333
        assert_rel_error(self, prob['x'], 6.666667, 1e-6)
        assert_rel_error(self, prob['y'], -7.333333, 1e-6)
コード例 #40
0
    def test_simple_paraboloid_unconstrained_SLSQP_bounds(self):

        # Make sure we don't go past high/low when set.
        prob = Problem()
        root = prob.root = Group()

        root.add("p1", ParamComp("x", 50.0), promotes=["*"])
        root.add("p2", ParamComp("y", 50.0), promotes=["*"])
        root.add("comp", Paraboloid(), promotes=["*"])
        root.add("obj_comp", ExecComp("obj = -f_xy"), promotes=["*"])

        prob.driver = ScipyOptimizer()
        prob.driver.options["optimizer"] = "SLSQP"
        prob.driver.add_param("x", low=-50.0, high=50.0)
        prob.driver.add_param("y", low=-50.0, high=50.0)

        prob.driver.add_objective("obj")

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob["x"], 50.0, 1e-6)
        assert_rel_error(self, prob["y"], 50.0, 1e-6)
コード例 #41
0
    def test_simple_paraboloid(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('con', ExecComp('c = 15.0 - x + y'), promotes=['*'])

        prob.driver = pyOptSparseDriver()
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.add_constraint('c')

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['x'], 7.16667, 1e-6)
        assert_rel_error(self, prob['y'], -7.833334, 1e-6)
コード例 #42
0
    def test_simple_paraboloid(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('con', ExecComp('c = 15.0 - x + y'), promotes=['*'])

        prob.driver = pyOptSparseDriver()
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.add_constraint('c')

        prob.setup(check=False)
        prob.run()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['x'], 7.16667, 1e-6)
        assert_rel_error(self, prob['y'], -7.833334, 1e-6)
コード例 #43
0
    def test_simple_paraboloid_unconstrained_SLSQP(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('f_xy')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        # Optimal solution (minimum): x = 6.6667; y = -7.3333
        assert_rel_error(self, prob['x'], 6.666667, 1e-6)
        assert_rel_error(self, prob['y'], -7.333333, 1e-6)
コード例 #44
0
    def test_fan_out(self):

        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 1.0))
        root.add('p2', ParamComp('x', 1.0))

        root.add('comp1', ExecComp('y = 3.0*x'))
        root.add('comp2', ExecComp('y = 5.0*x'))

        root.add('obj', ExecComp('o = i1 + i2'))
        root.add('con1', ExecComp('c = 15.0 - x'))
        root.add('con2', ExecComp('c = 15.0 - x'))

        # hook up non explicitly
        root.connect('p1.x', 'comp1.x')
        root.connect('p2.x', 'comp2.x')
        root.connect('comp1.y', 'obj.i1')
        root.connect('comp2.y', 'obj.i2')
        root.connect('comp1.y', 'con1.x')
        root.connect('comp2.y', 'con2.x')

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.add_param('p1.x', low=-50.0, high=50.0)
        prob.driver.add_param('p2.x', low=-50.0, high=50.0)
        prob.driver.add_objective('obj.o')
        prob.driver.add_constraint('con1.c', ctype='eq')
        prob.driver.add_constraint('con2.c', ctype='eq')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        obj = prob['obj.o']
        assert_rel_error(self, obj, 30.0, 1e-6)
コード例 #45
0
    def test_simple_paraboloid_unconstrained_SLSQP_bounds(self):

        # Make sure we don't go past high/low when set.
        prob = Problem()
        root = prob.root = Group()

        root.add('p1', ParamComp('x', 50.0), promotes=['*'])
        root.add('p2', ParamComp('y', 50.0), promotes=['*'])
        root.add('comp', Paraboloid(), promotes=['*'])
        root.add('obj_comp', ExecComp('obj = -f_xy'), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.add_param('x', low=-50.0, high=50.0)
        prob.driver.add_param('y', low=-50.0, high=50.0)

        prob.driver.add_objective('obj')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['x'], 50.0, 1e-6)
        assert_rel_error(self, prob['y'], 50.0, 1e-6)
コード例 #46
0
ファイル: example_mdp.py プロジェクト: shamsheersc19/CADRE
m = 300
npts = 6
restart = False

# These numbers are for quick testing
#n = 150
#m = 6
#npts = 2


# Instantiate
model = Problem(impl=impl)
root = model.root = CADRE_MDP_Group(n=n, m=m, npts=npts)

# add SNOPT driver
model.driver = pyOptSparseDriver()
model.driver.options['optimizer'] = "SNOPT"
model.driver.opt_settings = {'Major optimality tolerance': 1e-3,
                             'Major feasibility tolerance': 1.0e-5,
                             'Iterations limit': 500000000,
                             "New basis file": 10}

# Restart File
if restart is True and os.path.exists("fort.10"):
    model.driver.opt_settings["Old basis file"] = 10

# Add parameters and constraints to each CADRE instance.
names = ['pt%s' % i for i in range(npts)]
for i, name in enumerate(names):

    # add parameters to driver
コード例 #47
0
if __name__ == '__main__':
    # Setup and run the model.

    from openmdao.core.problem import Problem
    from openmdao.drivers.scipy_optimizer import ScipyOptimizer
    from openmdao.api import pyOptSparseDriver
    from openmdao.api import SqliteRecorder

    top = Problem()
    top.root = SellarDerivatives()

    # top.driver = ScipyOptimizer()
    # top.driver.options['optimizer'] = 'SLSQP'
    # top.driver.options['tol'] = 1.0e-8

    top.driver = pyOptSparseDriver()
    top.driver.options['optimizer'] = 'SNOPT'

    top.driver.add_desvar('z',
                          lower=np.array([-10.0, 0.0]),
                          upper=np.array([10.0, 10.0]))
    top.driver.add_desvar('x', lower=0.0, upper=10.0)

    top.driver.add_objective('obj')
    top.driver.add_constraint('con1', upper=0.0)
    top.driver.add_constraint('con2', upper=0.0)
    rec = SqliteRecorder('sellar_snopt.db')
    top.driver.add_recorder(rec)
    rec.options['record_derivs'] = True

    top.setup()
コード例 #48
0
    root = top.root = Group()

    root.add('simprop', IndepVarComp('simtime', val="100"))
    root.add('p1', IndepVarComp('rho', val=1.0))
    root.add('p2', IndepVarComp('jturbine', val=1.0))
    root.add('p3', IndepVarComp('ratio', val=1.0))
    root.add(
        'modelica',
        OMModelWrapper(
            'WindPowerPlants.Examples.GenericPlantRayleigh',
            '/Users/adam/repo/WindPowerPlants/WindPowerPlants/package.mo'))
    root.add('tl_peakPowerOutput', TakeLast())
    root.add('tl_integratedEnergy', TakeLast())

    top.driver = UniformDriver(5000)
    top.driver.add_desvar('p1.rho', low=1.0, high=1.5)
    top.driver.add_desvar('p2.jturbine',
                          low=13000000 * 0.7,
                          high=130000000 * 1.3)
    top.driver.add_desvar('p3.ratio', low=80.0, high=120.0)
    top.driver.add_objective('tl_peakPowerOutput.output')
    top.driver.add_objective('tl_integratedEnergy.output')

    root.connect('simprop.simtime', 'modelica.stopTime')
    root.connect('p1.rho', 'modelica.rho')
    root.connect('p2.jturbine', 'modelica.jturbine')
    root.connect('p3.ratio', 'modelica.ratio')
    root.connect('modelica.peakPowerOutput', 'tl_peakPowerOutput.input')
    root.connect('modelica.integratedEnergy', 'tl_integratedEnergy.input')
コード例 #49
0

if __name__ == "__main__":

    top = Problem()

    root = top.root = Group()

    root.add('p1', ParamComp('x', 3.0))
    root.add('p2', ParamComp('y', -4.0))
    root.add('p', Paraboloid())

    root.connect('p1.x', 'p.x')
    root.connect('p2.y', 'p.y')

    top.driver = ScipyOptimizer()
    top.driver.options['optimizer'] = 'SLSQP'

    top.driver.add_param('p1.x', low=-50, high=50)
    top.driver.add_param('p2.y', low=-50, high=50)
    top.driver.add_objective('p.f_xy')

    top.setup()
    top.run()

    print('\n')
    print('Minimum of %f found at (%f, %f)' %
          (top['p.f_xy'], top['p.x'], top['p.y']))

    # Expected Output
    # Minimum of -27.333333 found at (6.666667, -7.333333)