def test_ei_nobj(self): ei = MultiObjExpectedImprovement() ei.target = array([[1, 1, 1]]) list_of_cases = [Case(outputs=[("y1", 1), ("y2", 1), ("y3", 1)])] ei.criteria = ['y1', 'y2', 'y3'] ei.current = [NormalDistribution(mu=1, sigma=1), NormalDistribution(mu=1, sigma=1), NormalDistribution(mu=1, sigma=1)] ei.execute() self.assertAlmostEqual(0.875,ei.PI,1)
def test_ei_nobj(self): ei = MultiObjExpectedImprovement() ei.target = array([[1, 1, 1]]) list_of_cases = [Case(outputs=[("y1", 1), ("y2", 1), ("y3", 1)])] ei.criteria = ['y1', 'y2', 'y3'] ei.current = [ NormalDistribution(mu=1, sigma=1), NormalDistribution(mu=1, sigma=1), NormalDistribution(mu=1, sigma=1) ] ei.execute() self.assertAlmostEqual(0.875, ei.PI, 1)
def test_ei_nobj(self): ei = MultiObjExpectedImprovement(3) bests = CaseSet() list_of_cases = [Case(outputs=[("y1",1),("y2",1),("y3",1)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.criteria = ['y1','y2','y3'] ei.predicted_values = [NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1)] ei.execute() self.assertAlmostEqual(0.875,ei.PI,1)
def test_ei_2obj(self): ei = MultiObjExpectedImprovement() bests = CaseSet() list_of_cases = [Case(outputs=[("y1", 1), ("y2", 10)]), Case(outputs=[("y1", 1), ("y2", -10)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.criteria = ["y1", "y2"] ei.predicted_values = [NormalDistribution(mu=1, sigma=1), NormalDistribution(mu=0, sigma=1)] ei.calc_switch = "EI" ei.execute() self.assertAlmostEqual([5.0], ei.EI, 1) self.assertEqual(0.5, ei.PI, 6)
def test_ei_2obj(self): ei = MultiObjExpectedImprovement() bests = CaseSet() list_of_cases = [Case(outputs=[("y1",1),("y2",10)]),Case(outputs=[("y1",1),("y2",-10)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.criteria = ["y1","y2"] ei.predicted_values = [NormalDistribution(mu=1,sigma=1),NormalDistribution(mu=0,sigma=1)] ei.calc_switch = "EI" ei.execute() self.assertAlmostEqual([5.0],ei.EI,1) self.assertEqual(0.5,ei.PI,6)
def test_bad_criteria(self): ei = MultiObjExpectedImprovement(2) bests = CaseSet() list_of_cases = [Case(outputs=[("y1",1),("y2",1)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.criteria = ['y1','y3'] ei.predicted_values = [NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1)] try: ei.execute() except ValueError,err: self.assertEqual(str(err),": no cases in the provided case_set" " had output matching the provided criteria, ['y1' 'y3']")
def test_ei_calc_switch(self): ei = MultiObjExpectedImprovement(3) bests = CaseSet() list_of_cases = [Case(outputs=[("y1",1),("y2",1),("y3",1)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.criteria = ['y1','y2','y3'] ei.predicted_values = [NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1)] ei.calc_switch = 'EI' try: ei.execute() except ValueError,err: self.assertEqual(str(err),': EI calculations not supported' ' for more than 2 objectives')
def test_reset_y_star_event(self): ei = MultiObjExpectedImprovement(3) bests = CaseSet() list_of_cases = [Case(outputs=[("y1",1),("y2",1),("y3",1)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.criteria = ['y1','y2','y3'] ei.predicted_values = [NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1), NormalDistribution(mu=1,sigma=1)] ei.execute() bests = CaseSet() list_of_cases = [Case(outputs=[("y1",2),("y2",2),("y3",2)])] for case in list_of_cases: bests.record(case) ei.best_cases = bests ei.reset_y_star = True ei.execute() self.assertEqual(ei.y_star.all(),array([2,2,2]).all())