def execute(self): fs_tube = self.fs_tube = FlowStation() tube_rad = cu(self.radius_tube, 'cm', 'ft') #convert to ft inlet_rad = cu(self.radius_inlet, 'cm', 'ft') #A = pi(r^2) self._tube_area = pi * (tube_rad**2) #ft**2 self._inlet_area = pi * (inlet_rad**2) #ft**2 self._bypass_area = self._tube_area - self._inlet_area self._Ts = cu(self.Ts_tube, 'degK', 'degR') #convert to R self._Ps = cu(self.Ps_tube, 'Pa', 'psi') #convert to psi area_ratio_target = self._tube_area / self._bypass_area #iterate over pod speed until the area ratio = A_tube / A_bypass def f(m_guess): fs_tube.setStaticTsPsMN( self._Ts, self._Ps, m_guess ) #set the static conditions iteratively until correct (Ts, Ps are known) gam = fs_tube.gamt g_exp = (gam + 1) / (2 * (gam - 1)) ar = ((gam + 1) / 2)**(-1 * g_exp) * ( (1 + (gam - 1) / 2 * m_guess**2)**g_exp) / m_guess return ar - area_ratio_target #Solve for Mach where AR = AR_target self.limit_Mach = secant( f, .3, x_min=0, x_max=1 ) #value not actually needed, fs_tube contains necessary flow information self.limit_speed = cu(fs_tube.Vflow, 'ft', 'm') #convert to meters/second #excess mass flow calculation fs_tube.setStaticTsPsMN(self._Ts, self._Ps, self.Mach_pod) self.W_tube = cu(fs_tube.rhos * fs_tube.Vflow * self._tube_area, 'lbm', 'kg') #convert to kg/sec fs_tube.Mach = self.Mach_bypass #Kantrowitz flow is at these total conditions, but with Mach 1 self.W_kant = cu(fs_tube.rhos * fs_tube.Vflow * self._bypass_area, 'lbm', 'kg') #convert to kg/sec #print "test", fs_tube.rhos, fs_tube.Vflow, self._bypass_area, self.W_kant self.W_excess = self.W_tube - self.W_kant
def execute(self): fs_tube = self.fs_tube = FlowStation() tube_rad = cu(self.radius_tube,'cm','ft') #convert to ft inlet_rad = cu(self.radius_inlet,'cm','ft') #A = pi(r^2) self._tube_area = pi*(tube_rad**2) #ft**2 self._inlet_area = pi*(inlet_rad**2) #ft**2 self._bypass_area = self._tube_area - self._inlet_area self._Ts = cu(self.Ts_tube,'degK','degR') #convert to R self._Ps = cu(self.Ps_tube,'Pa','psi') #convert to psi area_ratio_target = self._tube_area/self._bypass_area #iterate over pod speed until the area ratio = A_tube / A_bypass def f(m_guess): fs_tube.setStaticTsPsMN(self._Ts, self._Ps , m_guess) #set the static conditions iteratively until correct (Ts, Ps are known) gam = fs_tube.gamt g_exp = (gam+1)/(2*(gam-1)) ar = ((gam+1)/2)**(-1*g_exp)*((1+ (gam-1)/2*m_guess**2)**g_exp)/m_guess return ar - area_ratio_target #Solve for Mach where AR = AR_target self.limit_Mach = secant(f, .3, x_min=0, x_max=1) #value not actually needed, fs_tube contains necessary flow information self.limit_speed = cu(fs_tube.Vflow,'ft','m') #convert to meters/second #excess mass flow calculation fs_tube.setStaticTsPsMN(self._Ts, self._Ps, self.Mach_pod) self.W_tube = cu(fs_tube.rhos*fs_tube.Vflow*self._tube_area,'lbm','kg') #convert to kg/sec fs_tube.Mach = self.Mach_bypass #Kantrowitz flow is at these total conditions, but with Mach 1 self.W_kant = cu(fs_tube.rhos*fs_tube.Vflow*self._bypass_area,'lbm','kg') #convert to kg/sec #print "test", fs_tube.rhos, fs_tube.Vflow, self._bypass_area, self.W_kant self.W_excess = self.W_tube - self.W_kant
def execute(self): """Calculate Various Paramters""" bearing_q = cu(self.bearing_air.W,'lbm/s','kg/s') * cu(self.bearing_air.Cp,'Btu/(lbm*degR)','J/(kg*K)') * (cu(self.bearing_air.Tt,'degR','degK') - self.temp_boundary) nozzle_q = cu(self.nozzle_air.W,'lbm/s','kg/s') * cu(self.nozzle_air.Cp,'Btu/(lbm*degR)','J/(kg*K)') * (cu(self.nozzle_air.Tt,'degR','degK') - self.temp_boundary) #Q = mdot * cp * deltaT self.heat_rate_pod = nozzle_q +bearing_q #Total Q = Q * (number of pods) self.total_heat_rate_pods = self.heat_rate_pod*self.num_pods #Determine thermal resistance of outside via Natural Convection or forced convection if(self.temp_outside_ambient < 400): self.GrDelTL3 = 41780000000000000000*((self.temp_outside_ambient)**(-4.639)) #SI units (https://mdao.grc.nasa.gov/publications/Berton-Thesis.pdf pg51) else: self.GrDelTL3 = 4985000000000000000*((self.temp_outside_ambient)**(-4.284)) #SI units (https://mdao.grc.nasa.gov/publications/Berton-Thesis.pdf pg51) #Prandtl Number #Pr = viscous diffusion rate/ thermal diffusion rate = Cp * dyanamic viscosity / thermal conductivity #Pr << 1 means thermal diffusivity dominates #Pr >> 1 means momentum diffusivity dominates if (self.temp_outside_ambient < 400): self.Pr = 1.23*(self.temp_outside_ambient**(-0.09685)) #SI units (https://mdao.grc.nasa.gov/publications/Berton-Thesis.pdf pg51) else: self.Pr = 0.59*(self.temp_outside_ambient**(0.0239)) #Grashof Number #Relationship between buoyancy and viscosity #Laminar = Gr < 10^8 #Turbulent = Gr > 10^9 self.Gr = self.GrDelTL3*(self.temp_boundary-self.temp_outside_ambient)*(self.diameter_outer_tube**3) #Rayleigh Number #Buoyancy driven flow (natural convection) self.Ra = self.Pr * self.Gr #Nusselt Number #Nu = convecive heat transfer / conductive heat transfer if (self.Ra<=10**12): #valid in specific flow regime self.Nu = (0.6 + 0.387*self.Ra**(1./6.)/(1 + (0.559/self.Pr)**(9./16.))**(8./27.))**2 #3rd Ed. of Introduction to Heat Transfer by Incropera and DeWitt, equations (9.33) and (9.34) on page 465 if(self.temp_outside_ambient < 400): self.k = 0.0001423*(self.temp_outside_ambient**(0.9138)) #SI units (https://mdao.grc.nasa.gov/publications/Berton-Thesis.pdf pg51) else: self.k = 0.0002494*(self.temp_outside_ambient**(0.8152)) #h = k*Nu/Characteristic Length self.h = (self.k * self.Nu)/ self.diameter_outer_tube #Convection Area = Surface Area self.area_convection = pi * self.length_tube * self.diameter_outer_tube #Determine heat radiated per square meter (Q) self.q_per_area_nat_conv = self.h*(self.temp_boundary-self.temp_outside_ambient) #Determine total heat radiated over entire tube (Qtotal) self.total_q_nat_conv = self.q_per_area_nat_conv * self.area_convection #Determine heat incoming via Sun radiation (Incidence Flux) #Sun hits an effective rectangular cross section self.area_viewing = self.length_tube* self.diameter_outer_tube self.q_per_area_solar = (1-self.surface_reflectance)* self.nn_incidence_factor * self.solar_insolation self.q_total_solar = self.q_per_area_solar * self.area_viewing #Determine heat released via radiation #Radiative area = surface area self.area_rad = self.area_convection #P/A = SB*emmisitivity*(T^4 - To^4) self.q_rad_per_area = self.sb_constant*self.emissivity_tube*((self.temp_boundary**4) - (self.temp_outside_ambient**4)) #P = A * (P/A) self.q_rad_tot = self.area_rad * self.q_rad_per_area #------------ #Sum Up self.q_total_out = self.q_rad_tot + self.total_q_nat_conv self.q_total_in = self.q_total_solar + self.total_heat_rate_pods self.ss_temp_residual = (self.q_total_out - self.q_total_in)/1e6
def configure(self): tm = self.add('tm', TubeWall()) #tm.bearing_air.setTotalTP() driver = self.add('driver',BroydenSolver()) driver.add_parameter('tm.temp_boundary',low=0.,high=10000.) driver.add_constraint('tm.ss_temp_residual=0') driver.workflow.add(['tm']) test = TubeHeatBalance() set_as_top(test) #set input values test.tm.nozzle_air.setTotalTP(1710, 0.304434211) test.tm.nozzle_air.W = 1.08 test.tm.bearing_air.W = 0. test.tm.diameter_outer_tube = 2.22504#, units = 'm', iotype='in', desc='Tube out diameter') #7.3ft test.tm.length_tube = 482803.#, units = 'm', iotype='in', desc='Length of entire Hyperloop') #300 miles, 1584000ft test.tm.num_pods = 34.#, units = 'K', iotype='in', desc='Number of Pods in the Tube at a given time') # test.tm.temp_boundary = 340#, units = 'K', iotype='in', desc='Average Temperature of the tube') # test.tm.temp_outside_ambient = 305.6#, units = 'K', iotype='in', desc='Average Temperature of the outside air') # test.run() print "-----Completed Tube Heat Flux Model Calculations---" print "" print "CompressQ-{} SolarQ-{} RadQ-{} ConvecQ-{}".format(test.tm.total_heat_rate_pods, test.tm.q_total_solar, test.tm.q_rad_tot, test.tm.total_q_nat_conv ) print "Equilibrium Wall Temperature: {} K or {} F".format(test.tm.temp_boundary, cu(test.tm.temp_boundary,'degK','degF')) print "Ambient Temperature: {} K or {} F".format(test.tm.temp_outside_ambient, cu(test.tm.temp_outside_ambient,'degK','degF')) print "Q Out = {} W ==> Q In = {} W ==> Error: {}%".format(test.tm.q_total_out,test.tm.q_total_in,((test.tm.q_total_out-test.tm.q_total_in)/test.tm.q_total_out)*100)
check('Da_h',test.Da_h, 0.016082) check('Da_e',test.Da_e, 0.039586) check('Dw_h',test.Dw_h, test.Di_tube) check('Dw_e',test.Dw_e, test.Di_tube) check('Re_a',test.Re_a, 966613) check('Re_w',test.Re_w, 41650) check('Pr_a',test.Pr_a, 0.68) check('Pr_w',test.Pr_w, 2.25) check('Nu_a',test.Nu_a, 1210.) check('Nu_w',test.Nu_w, 145.) check('h_a',test.h_a, 1387.989) check('h_w',test.h_w, 2570.589) check('U_o',test.U_o, 879.019) check('LMTD',test.LMTD, 164.28) if (test.N < 2): #only check single pass case check('L',test.L, 14.078) print "-----Completed Heat Exchanger Sizing---" print "" print "Heat Exchanger Length: {} meters, with {} tube pass(es)".format(test.L/2,test.N) #sqrt(#passes * tube area * packing factor) #assumes shell magically becomes rectangular but keeps packing factor packing_factor = (test.A_a/(test.A_a + test.A_w)) + 1 x = cu(((test.N * pi*((test.Do_tube/2)**2)*packing_factor)**0.5),'m','ft') y = 2*x #height of a double pass tot_vol = x*y * cu(test.L,'m','ft') print "Heat Exchanger Dimensions: {}ft (Length) x {}ft (Width) x {}ft (Height)".format(cu(test.L,'m','ft')/2,x,y) print "Heat Exchanger Volume: {} ft^3".format( tot_vol)
check('Dw_e', test.Dw_e, test.Di_tube) check('Re_a', test.Re_a, 966613) check('Re_w', test.Re_w, 41650) check('Pr_a', test.Pr_a, 0.68) check('Pr_w', test.Pr_w, 2.25) check('Nu_a', test.Nu_a, 1210.) check('Nu_w', test.Nu_w, 145.) check('h_a', test.h_a, 1387.989) check('h_w', test.h_w, 2570.589) check('U_o', test.U_o, 879.019) check('LMTD', test.LMTD, 164.28) if (test.N < 2): #only check single pass case check('L', test.L, 14.078) print "-----Completed Heat Exchanger Sizing---" print "" print "Heat Exchanger Length: {} meters, with {} tube pass(es)".format( test.L / 2, test.N) #sqrt(#passes * tube area * packing factor) #assumes shell magically becomes rectangular but keeps packing factor packing_factor = (test.A_a / (test.A_a + test.A_w)) + 1 x = cu(((test.N * pi * ((test.Do_tube / 2)**2) * packing_factor)**0.5), 'm', 'ft') y = 2 * x #height of a double pass tot_vol = x * y * cu(test.L, 'm', 'ft') print "Heat Exchanger Dimensions: {}ft (Length) x {}ft (Width) x {}ft (Height)".format( cu(test.L, 'm', 'ft') / 2, x, y) print "Heat Exchanger Volume: {} ft^3".format(tot_vol)
def configure(self): tm = self.add('tm', TubeWallTemp()) #tm.bearing_air.setTotalTP() driver = self.add('driver',BroydenSolver()) driver.add_parameter('tm.temp_boundary',low=0.,high=10000.) driver.add_constraint('tm.ss_temp_residual=0') driver.workflow.add(['tm']) test = TubeHeatBalance() set_as_top(test) #set input values test.tm.nozzle_air.setTotalTP(1710, 0.304434211) test.tm.nozzle_air.W = 1.08 test.tm.bearing_air.W = 0. test.tm.diameter_outer_tube = 2.22504#, units = 'm', iotype='in', desc='Tube out diameter') #7.3ft test.tm.length_tube = 482803.#, units = 'm', iotype='in', desc='Length of entire Hyperloop') #300 miles, 1584000ft test.tm.num_pods = 34.#, units = 'K', iotype='in', desc='Number of Pods in the Tube at a given time') # test.tm.temp_boundary = 340#, units = 'K', iotype='in', desc='Average Temperature of the tube') # test.tm.temp_outside_ambient = 305.6#, units = 'K', iotype='in', desc='Average Temperature of the outside air') # test.run() print "-----Completed Tube Heat Flux Model Calculations---" print "" print "CompressQ-{} SolarQ-{} RadQ-{} ConvecQ-{}".format(test.tm.total_heat_rate_pods, test.tm.q_total_solar, test.tm.q_rad_tot, test.tm.total_q_nat_conv ) print "Equilibrium Wall Temperature: {} K or {} F".format(test.tm.temp_boundary, cu(test.tm.temp_boundary,'degK','degF')) print "Ambient Temperature: {} K or {} F".format(test.tm.temp_outside_ambient, cu(test.tm.temp_outside_ambient,'degK','degF')) print "Q Out = {} W ==> Q In = {} W ==> Error: {}%".format(test.tm.q_total_out,test.tm.q_total_in,((test.tm.q_total_out-test.tm.q_total_in)/test.tm.q_total_out)*100)