コード例 #1
0
    def test_overrides(self):

        prob = Problem()
        prob.root = Group()
        prob.root.ln_solver = ScipyGMRES()
        prob.root.add('comp', SimpleImplicitComp())
        prob.root.add('p1', IndepVarComp('x', 0.5))

        prob.root.connect('p1.x', 'comp.x')
        prob.root.comp.deriv_options['check_type'] = 'fd'
        prob.root.comp.deriv_options['check_step_size'] = 1e25

        prob.setup(check=False)
        prob.run()

        # This should override the bad stepsize.
        opts = {'check_step_size' : 1e-6}
        mystream = StringIO()
        data = prob.check_partial_derivatives(out_stream=mystream, global_options=opts)

        for key1, val1 in iteritems(data):
            for key2, val2 in iteritems(val1):
                assert_rel_error(self, val2['abs error'][0], 0.0, 1e-5)
                assert_rel_error(self, val2['abs error'][1], 0.0, 1e-5)
                assert_rel_error(self, val2['abs error'][2], 0.0, 1e-5)
                assert_rel_error(self, val2['rel error'][0], 0.0, 1e-5)
                assert_rel_error(self, val2['rel error'][1], 0.0, 1e-5)
                assert_rel_error(self, val2['rel error'][2], 0.0, 1e-5)

        prob = Problem()
        prob.root = Group()
        prob.root.ln_solver = ScipyGMRES()
        prob.root.add('comp', SimpleImplicitComp())
        prob.root.add('p1', IndepVarComp('x', 0.5))

        prob.root.connect('p1.x', 'comp.x')
        prob.root.comp.deriv_options['check_type'] = 'fd'
        prob.root.comp.deriv_options['check_step_size'] = 1e25

        prob.setup(check=False)
        prob.run()

        mystream = StringIO()
        opts = {'check_form' : 'central'}
        data = prob.check_partial_derivatives(out_stream=mystream, global_options=opts,
                                              compact_print=True)
        text = mystream.getvalue()
        self.assertTrue('fd:central' in text)
        self.assertTrue('complex_step' not in text)

        mystream = StringIO()
        opts = {'check_type' : 'cs'}
        data = prob.check_partial_derivatives(out_stream=mystream, global_options=opts,
                                              compact_print=True)
        text = mystream.getvalue()
        self.assertTrue('fd:central' not in text)
        self.assertTrue('complex step' in text)
コード例 #2
0
    def test_alloc_jacobian(self):
        # Testing the helper function

        p = Problem()
        root = p.root = Group()

        root.add('comp1', ExecComp(["y[0]=x[0]*2.0+x[1]*7.0",
                                    "y[1]=x[0]*5.0-x[1]*3.0+x[2]*1.5"],
                                    x=np.zeros(3), y=np.zeros(2)))
        root.add('comp2', SimpleImplicitComp())

        root.ln_solver.options['maxiter'] = 2
        p.setup(check=False)

        # Explciit
        J = root.comp1.alloc_jacobian()

        self.assertTrue(len(J) == 1)
        self.assertTrue(('y', 'x') in J)
        self.assertTrue(J[('y', 'x')].shape == (2,3))

        # Implicit
        J = root.comp2.alloc_jacobian()

        self.assertTrue(len(J) == 4)
        self.assertTrue(('y', 'x') in J)
        self.assertTrue(('y', 'z') in J)
        self.assertTrue(('z', 'x') in J)
        self.assertTrue(('z', 'z') in J)
        self.assertTrue(J[('y', 'x')].shape == (1, 1))
        self.assertTrue(J[('y', 'z')].shape == (1, 1))
        self.assertTrue(J[('z', 'x')].shape == (1, 1))
        self.assertTrue(J[('z', 'z')].shape == (1, 1))

        p.run()
コード例 #3
0
    def test_simple_implicit_complex_step(self):

        prob = Problem()
        prob.root = Group()
        prob.root.ln_solver = ScipyGMRES()
        prob.root.add('comp', SimpleImplicitComp())
        prob.root.add('p1', IndepVarComp('x', 0.5))

        prob.root.connect('p1.x', 'comp.x')

        prob.root.comp.fd_options['step_size'] = 1.0e4
        prob.root.comp.fd_options['form'] = 'complex_step'

        prob.setup(check=False)
        prob.run()

        data = prob.check_partial_derivatives(out_stream=None)

        for key1, val1 in iteritems(data):
            for key2, val2 in iteritems(val1):
                assert_rel_error(self, val2['abs error'][0], 0.0, 1e-5)
                assert_rel_error(self, val2['abs error'][1], 0.0, 1e-5)
                assert_rel_error(self, val2['abs error'][2], 0.0, 1e-5)
                assert_rel_error(self, val2['rel error'][0], 0.0, 1e-5)
                assert_rel_error(self, val2['rel error'][1], 0.0, 1e-5)
                assert_rel_error(self, val2['rel error'][2], 0.0, 1e-5)
コード例 #4
0
    def test_simple_implicit_check_options(self):

        prob = Problem()
        prob.root = Group()
        prob.root.ln_solver = ScipyGMRES()
        prob.root.add('comp', SimpleImplicitComp())
        prob.root.add('p1', IndepVarComp('x', 0.5))

        prob.root.connect('p1.x', 'comp.x')

        # Not using this
        prob.root.deriv_options['step_size'] = 1e4

        # Using these
        prob.root.deriv_options['check_form'] = 'central'
        prob.root.deriv_options['check_step_size'] = 1e-3

        prob.setup(check=False)
        prob.run()

        data = prob.check_total_derivatives(out_stream=None)

        for key, val in iteritems(data):
            assert_rel_error(self, val['abs error'][0], 0.0, 1e-5)
            assert_rel_error(self, val['abs error'][1], 0.0, 1e-5)
            assert_rel_error(self, val['abs error'][2], 0.0, 1e-5)
            assert_rel_error(self, val['rel error'][0], 0.0, 1e-5)
            assert_rel_error(self, val['rel error'][1], 0.0, 1e-5)
            assert_rel_error(self, val['rel error'][2], 0.0, 1e-5)
コード例 #5
0
    def test_conflicting_promoted_state_vars(self):
        # verify we get an error if we have conflicting promoted state variables
        root = Group()

        comp1 = SimpleImplicitComp()
        comp2 = SimpleImplicitComp()

        root.add('c1', comp1, promotes=['z'])  # promote the state, z
        root.add('c2', comp2,
                 promotes=['z'])  # promote the state, z, again.. BAD

        prob = Problem(root)

        with self.assertRaises(RuntimeError) as err:
            prob.setup(check=False)

        expected_msg = "'': promoted name 'z' matches multiple unknowns: ('c1.z', 'c2.z')"

        self.assertEqual(str(err.exception), expected_msg)
コード例 #6
0
    def __init__(self):
        super(TestProb, self).__init__()

        self.root = root = Group()
        root.add('c1', SimpleArrayComp())
        root.add('p1', ParamComp('p', 1 * np.ones(2)))
        root.connect('p1.p', 'c1.x')

        root.add('ci1', SimpleImplicitComp())
        root.add('pi1', ParamComp('p', 1.))
        root.connect('pi1.p', 'ci1.x')
コード例 #7
0
    def __init__(self):
        super(TestProb, self).__init__()

        self.root = root = Group()
        root.ln_solver = ScipyGMRES()
        root.add('c1', SimpleArrayComp())
        root.add('p1', IndepVarComp('p', 1*np.ones(2)))
        root.connect('p1.p','c1.x')

        root.add('ci1', SimpleImplicitComp())
        root.add('pi1', IndepVarComp('p', 1.))
        root.connect('pi1.p','ci1.x')

        root.add('pjunk', IndepVarComp('pj', np.ones((2,2))))
        root.add('junk', ExecComp('y=x', x=np.zeros((2,2)), y=np.zeros((2,2))))
        root.connect('pjunk.pj', 'junk.x')
コード例 #8
0
    def test_simple_implicit(self):

        prob = Problem()
        prob.root = Group()
        prob.root.add('comp', SimpleImplicitComp())
        prob.root.add('p1', ParamComp('x', 0.5))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        data = prob.check_total_derivatives(out_stream=None)

        for key, val in iteritems(data):
            assert_rel_error(self, val['abs error'][0], 0.0, 1e-5)
            assert_rel_error(self, val['abs error'][1], 0.0, 1e-5)
            assert_rel_error(self, val['abs error'][2], 0.0, 1e-5)
            assert_rel_error(self, val['rel error'][0], 0.0, 1e-5)
            assert_rel_error(self, val['rel error'][1], 0.0, 1e-5)
            assert_rel_error(self, val['rel error'][2], 0.0, 1e-5)
コード例 #9
0
    def test_simple_implicit_Jacobian(self):

        # Tests that we can correctly handle user-defined Jacobians.
        # Now with a comp that has a state.

        params = {}
        params['x'] = 0.5
        unknowns = {}
        unknowns['y'] = 0.0
        unknowns['z'] = 0.0
        resids = {}
        resids['z'] = 0.0

        mycomp = SimpleImplicitComp()

        # Run model so we can calc derivatives around the solved state
        mycomp.solve_nonlinear(params, unknowns, resids)

        mycomp._jacobian_cache = mycomp.linearize(params, unknowns, resids)
        J = mycomp._jacobian_cache

        # Forward

        dparams = {}
        dparams['x'] = np.array([1.3])
        dunknowns = {}
        dunknowns['z'] = np.array([2.5])
        dresids = {}
        dresids['y'] = np.array([0.0])
        dresids['z'] = np.array([0.0])

        mycomp.apply_linear(params, unknowns, dparams, dunknowns,
                            dresids, 'fwd')

        target = J[('y', 'x')]*dparams['x'] + J[('y', 'z')]*dunknowns['z']
        diff = abs(dresids['y'] - target).max()
        self.assertAlmostEqual(diff, 0.0, places=3)

        target = J[('z', 'x')]*dparams['x'] + J[('z', 'z')]*dunknowns['z']
        diff = abs(dresids['z'] - target).max()
        self.assertAlmostEqual(diff, 0.0, places=3)

        # Reverse

        dparams = {}
        dparams['x'] = np.array([0.0])
        dunknowns = {}
        dunknowns['z'] = np.array([0.0])
        dresids = {}
        dresids['y'] = np.array([1.5])
        dresids['z'] = np.array([2.3])

        mycomp.apply_linear(params, unknowns, dparams, dunknowns,
                            dresids, 'rev')

        target = J[('y', 'x')]*dresids['y'] + J[('z', 'x')]*dresids['z']
        diff = abs(dparams['x'] - target).max()
        self.assertAlmostEqual(diff, 0.0, places=3)

        target = J[('y', 'z')]*dresids['y'] + J[('z', 'z')]*dresids['z']
        diff = abs(dunknowns['z'] - target).max()
        self.assertAlmostEqual(diff, 0.0, places=3)
コード例 #10
0
ファイル: test_group.py プロジェクト: rajgupt/OpenMDAO
    def test_list_states(self):

        top = Problem()
        root = top.root = Group()
        sub = root.add('sub', Group())
        sub.add('comp', SimpleImplicitComp())
        sub.ln_solver = ScipyGMRES()
        top.setup(check=False)
        top['sub.comp.z'] = 7.7

        stream = cStringIO()
        root.list_states(stream=stream)
        self.assertTrue('sub.comp.z' in stream.getvalue())
        self.assertTrue('Value: 7.7' in stream.getvalue())
        self.assertTrue('Residual: 0.0' in stream.getvalue())
        self.assertTrue('States in model:' in stream.getvalue())

        stream = cStringIO()
        sub.list_states(stream=stream)
        self.assertTrue('comp.z' in stream.getvalue())
        self.assertTrue('Value: 7.7' in stream.getvalue())
        self.assertTrue('Residual: 0.0' in stream.getvalue())
        self.assertTrue('sub.comp.z' not in stream.getvalue())
        self.assertTrue('States in sub:' in stream.getvalue())

        top = Problem()
        root = top.root = ExampleGroupWithPromotes()
        top.setup(check=False)

        stream = cStringIO()
        root.list_states(stream=stream)
        self.assertTrue('No states in model.' in stream.getvalue())

        stream = cStringIO()
        root.G2.list_states(stream=stream)
        self.assertTrue('No states in G2.' in stream.getvalue())

        class ArrayImplicitComp(Component):
            """ Needed to test arrays here. """
            def __init__(self):
                super(ArrayImplicitComp, self).__init__()

                # Params
                self.add_param('x', np.zeros((3, 1)))

                # Unknowns
                self.add_output('y', np.zeros((3, 1)))

                # States
                self.add_state('z',
                               2.0 * np.ones((3, 1)),
                               lower=1.5,
                               upper=np.array([2.5, 2.6, 2.7]))

            def solve_nonlinear(self, params, unknowns, resids):
                pass

            def apply_nonlinear(self, params, unknowns, resids):
                """ Don't solve; just calculate the residual."""
                pass

            def linearize(self, params, unknowns, resids):
                """Analytical derivatives."""
                pass

        top = Problem()
        root = top.root = Group()
        root.add('comp', ArrayImplicitComp())
        root.ln_solver.options['maxiter'] = 2
        top.setup(check=False)

        stream = cStringIO()
        root.list_states(stream=stream)
        base = 'States in model:\n\ncomp.z\nValue: [[ 2.]\n [ 2.]\n [ 2.]]\nResidual: [[ 0.]\n [ 0.]\n [ 0.]]'
        self.assertTrue(base in stream.getvalue())