def meg_gain(self, meg_file=None): """ Call OpenMEEG's GainMEG method to calculate the final projection matrix. Optionaly saving the matrix for later use. The OpenMEEG matrix is converted to a Numpy array before return. """ LOG.info("Computing GainMEG...") meg_gain = om.GainMEG(self.om_inverse_head, self.om_source_matrix, self.om_head2sensor, self.om_source2sensor) LOG.info("meg_gain: %d x %d" % (meg_gain.nlin(), meg_gain.ncol())) if meg_file is not None: LOG.info("Saving meg_gain as %s..." % meg_file) meg_gain.save( os.path.join(OM_STORAGE_DIR, meg_file + OM_SAVE_SUFFIX)) return om.asarray(meg_gain)
gauss_order = 3 use_adaptive_integration = True dipole_in_cortex = True hm = om.HeadMat(geom, gauss_order) #hm.invert() # invert hm inplace (no copy) #hminv = hm hminv = hm.inverse() # invert hm with a copy ssm = om.SurfSourceMat(geom, mesh) ss2mm = om.SurfSource2MEGMat(mesh, sensors) dsm = om.DipSourceMat(geom, dipoles, gauss_order, use_adaptive_integration, "") ds2mm = om.DipSource2MEGMat(dipoles, sensors) h2mm = om.Head2MEGMat(geom, sensors) h2em = om.Head2EEGMat(geom, patches) gain_meg_surf = om.GainMEG(hminv, ssm, h2mm, ss2mm) gain_eeg_surf = om.GainEEG(hminv, ssm, h2em) gain_meg_dip = om.GainMEG(hminv, dsm, h2mm, ds2mm) gain_adjoint_meg_dip = om.GainMEGadjoint(geom, dipoles, hm, h2mm, ds2mm) gain_eeg_dip = om.GainEEG(hminv, dsm, h2em) gain_adjoint_eeg_dip = om.GainEEGadjoint(geom, dipoles, hm, h2em) gain_adjoint_eeg_meg_dip = om.GainEEGMEGadjoint(geom, dipoles, hm, h2em, h2mm, ds2mm) print "hm : %d x %d" % (hm.nlin(), hm.ncol()) print "hminv : %d x %d" % (hminv.nlin(), hminv.ncol()) print "ssm : %d x %d" % (ssm.nlin(), ssm.ncol()) print "ss2mm : %d x %d" % (ss2mm.nlin(), ss2mm.ncol()) print "dsm : %d x %d" % (ssm.nlin(), ssm.ncol()) print "ds2mm : %d x %d" % (ss2mm.nlin(), ss2mm.ncol()) print "h2mm : %d x %d" % (h2mm.nlin(), h2mm.ncol())