est_meg_adjoint = om.Forward(gain_adjoint_meg_dip, sources, noise_level) print "est_meg_adjoint : %d x %d" % (est_meg_adjoint.nlin(), est_meg_adjoint.ncol()) est_eeg = om.Forward(gain_eeg_dip, sources, noise_level) print "est_eeg : %d x %d" % (est_eeg.nlin(), est_eeg.ncol()) est_eeg_adjoint = om.Forward(gain_adjoint_eeg_dip, sources, noise_level) print "est_eeg_adjoint : %d x %d" % (est_eeg_adjoint.nlin(), est_eeg_adjoint.ncol()) ############################################################################### # Example of basic manipulations v1 = om.Vertex(1., 0., 0., 0) v2 = om.Vertex(0., 1., 0., 1) v3 = om.Vertex(0., 0., 1., 2) #print v1.norm() #print (v1 + v2).norm() normal = om.Vect3(1., 0., 0.) t = om.Triangle(v1, v2, v3) hm_file = subject + '.hm' hm.save(hm_file) ssm_file = subject + '.ssm' ssm.save(ssm_file)
est_meg_adjoint = om.Forward(gain_adjoint_meg_dip, sources, noise_level) print("est_meg_adjoint : %d x %d" % (est_meg_adjoint.nlin(), est_meg_adjoint.ncol())) est_eeg = om.Forward(gain_eeg_dip, sources, noise_level) print("est_eeg : %d x %d" % (est_eeg.nlin(), est_eeg.ncol())) est_eeg_adjoint = om.Forward(gain_adjoint_eeg_dip, sources, noise_level) print("est_eeg_adjoint : %d x %d" % (est_eeg_adjoint.nlin(), est_eeg_adjoint.ncol())) # Example of basic manipulations # TODO: the same with numpy v1 = om.Vertex(1.0, 0.0, 0.0, 0) v2 = om.Vertex(0.0, 1.0, 0.0, 1) v3 = om.Vertex(0.0, 0.0, 1.0, 2) # TODO: v4 = om.Vertex( [double] , int ) # print(v1.norm() # print((v1 + v2).norm() normal = om.Vect3(1.0, 0.0, 0.0) t = om.Triangle(v1, v2, v3) hm_file = subject + ".hm" hm.save(hm_file) ssm_file = subject + ".ssm" ssm.save(ssm_file)