コード例 #1
0
ファイル: tdcs.py プロジェクト: eolivi/openmeeg_sample_data
def main(argv):
    """Compute the tdcs."""
    # create a dir for leadfields and tmp
    if not op.exists("tmp"):
        import os
        os.mkdir('tmp')
    if not op.exists("leadfields"):
        import os
        os.mkdir('leadfields')

    filename = 'leadfields/HDTDCS_' + argv + '.vtp'
    filename_HMi = op.join('tmp', argv + '_HMi.mat')

    if recompute:
        model = load_headmodel(argv)
        if recompute_HMi or not op.exists(filename_HMi):
            hm = om.HeadMat(model['geometry'])
            hm.invert()
            hm.save(filename_HMi)
        else:
            print("Loading %s" % filename_HMi)
            hm = om.SymMatrix(filename_HMi)

        sm = om.EITSourceMat(model['geometry'], model['tdcssources'])
        # set here the input currents (actually a current density [I/L])
        activation = om.fromarray(
            np.array([[-4., 1.], [1., -4.], [1., 1.], [1., 1.], [1., 1.]]))
        # each column must have a zero mean
        # now apply the currents and get the result
        X = hm * (sm * activation)
        # concatenate X with input currents (to see the what was injected)
        Xt = np.append(om.asarray(X),
                       np.zeros((model['geometry'].size() - X.nlin(),
                                 X.ncol())),
                       0)
        currents = om.asarray(activation)
        for s in range(model['tdcssources'].getNumberOfSensors()):
            # get the triangles supporting this sensor
            tris = model['tdcssources'].getInjectionTriangles(s)
            for it in tris:
                Xt[it.getindex(), :] = (currents[s, :] *
                                        model['tdcssources'].getWeights()(s))

        X = om.fromarray(Xt)
        model['geometry'].write_vtp(filename, X)

    display_vtp(filename)
コード例 #2
0
 def meg_gain(self, meg_file=None):
     """
     Call OpenMEEG's GainMEG method to calculate the final projection matrix.
     Optionaly saving the matrix for later use. The OpenMEEG matrix is 
     converted to a Numpy array before return. 
     """
     LOG.info("Computing GainMEG...")
     meg_gain = om.GainMEG(self.om_inverse_head, self.om_source_matrix,
                           self.om_head2sensor, self.om_source2sensor)
     LOG.info("meg_gain: %d x %d" % (meg_gain.nlin(), meg_gain.ncol()))
     if meg_file is not None:
         LOG.info("Saving meg_gain as %s..." % meg_file)
         meg_gain.save(
             os.path.join(OM_STORAGE_DIR, meg_file + OM_SAVE_SUFFIX))
     return om.asarray(meg_gain)
コード例 #3
0
 def meg_gain(self, meg_file=None):
     """
     Call OpenMEEG's GainMEG method to calculate the final projection matrix.
     Optionaly saving the matrix for later use. The OpenMEEG matrix is 
     converted to a Numpy array before return. 
     """
     LOG.info("Computing GainMEG...")
     meg_gain = om.GainMEG(self.om_inverse_head, self.om_source_matrix,
                           self.om_head2sensor, self.om_source2sensor)
     LOG.info("meg_gain: %d x %d" % (meg_gain.nlin(), meg_gain.ncol()))
     if meg_file is not None:
         LOG.info("Saving meg_gain as %s..." % meg_file)
         meg_gain.save(os.path.join(OM_STORAGE_DIR,
                                    meg_file + OM_SAVE_SUFFIX))
     return om.asarray(meg_gain)
コード例 #4
0
ファイル: test_python.py プロジェクト: piandpower/openmeeg
#print m1.ncol()

m2 = om.Matrix()
m2.load(ssm_file)
#m2.setvalue(2,3,-0.2) # m2(2,3)=-0.2
#print m2(2,3)
#print m2(0, 0)
#print m2.nlin()
#print m2.ncol()

###############################################################################
# Numpy interface

# For a Vector
v = hm(1, 10, 1, 1).getcol(0)
vec = om.asarray(v)
m = om.fromarray(vec)
assert ((v - m.getcol(0)).norm() < 1e-15)

# For a Matrix
mat = om.asarray(m2)
assert ((m2 - om.fromarray(mat)).frobenius_norm() < 1e-15)
#print mat.shape
#print mat.sum()
#mat[0:2, 1:3] = 0
#print mat[0:5, 0:5]

#remove useless files
os.remove(hm_file)
os.remove(ssm_file)
コード例 #5
0
import numpy as np
import openmeeg as om
from scipy import linalg
from mayavi import mlab
from mesh import Mesh

cortex = Mesh("data/model/cortex.tri")
electrodes = np.loadtxt('data/model/eeg_channels_locations.txt')
squids = np.loadtxt('data/model/meg_channels_locations.squids')

M = om.Matrix('leadfields/eeg_leadfield.mat')
G_eeg = om.asarray(M)

chan_idx = 28

n_dipoles = G_eeg.shape[1]

###############################################################################
# Generate activation map with only one dipole active
x_simu = np.zeros(n_dipoles)
dipole_idx = 1000
x_simu[dipole_idx] = 1

# compute forward model
m = np.dot(G_eeg, x_simu)

# add measurement noise
m += 1e-8 * np.random.randn(*m.shape)

# show topography
electrodes_mesh = Mesh("data/model/eeg_channels_mesh.tri")
コード例 #6
0
ファイル: demo.py プロジェクト: delalond/openmeeg
m1 = om.SymMatrix()
m1.load(hm_file)
print m1(0, 0)
print m1.nlin()
print m1.ncol()

m2 = om.Matrix()
m2.load(ssm_file)
print m2(0, 0)
print m2.nlin()
print m2.ncol()

###############################################################################
# Numpy interface

# For a Vector

vec = om.asarray(ai_vector)
print vec.size
print vec[0:5]
print vec

# For a Matrix

mat = om.asarray(m2)

print mat.shape
print mat.sum()
mat[0:2, 1:3] = 0
print mat[0:5, 0:5]
コード例 #7
0
ファイル: test_python.py プロジェクト: bburle/openmeeg
#print m1.ncol()

m2 = om.Matrix()
m2.load(ssm_file)
#m2.setvalue(2,3,-0.2) # m2(2,3)=-0.2
#print m2(2,3)
#print m2(0, 0)
#print m2.nlin()
#print m2.ncol()

###############################################################################
# Numpy interface

# For a Vector
v=hm(1,10,1,1).getcol(0)
vec = om.asarray(v)
m=om.fromarray(vec)
assert((v-m.getcol(0)).norm() < 1e-15)

# For a Matrix
mat = om.asarray(m2)
assert((m2-om.fromarray(mat)).frobenius_norm() < 1e-15)
#print mat.shape
#print mat.sum()
#mat[0:2, 1:3] = 0
#print mat[0:5, 0:5]


#remove useless files
os.remove(hm_file)
os.remove(ssm_file)