コード例 #1
0
def _parse_csv_line(headers, values, req_site_params):
    """
    Parse a single line from data file.

    :param headers:
        A list of header names, the strings from the first line of csv file.
    :param values:
        A list of values of a single row to parse.
    :returns:
        A tuple of the following values (in specified order):

        sctx
            An instance of :class:`openquake.hazardlib.gsim.base.SitesContext`
            with attributes populated by the information from in row in a form
            of single-element numpy arrays.
        rctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.RuptureContext`.
        dctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.DistancesContext`.
        stddev_types
            An empty list, if the ``result_type`` column says "MEAN"
            for that row, otherwise it is a list with one item --
            a requested standard deviation type.
        expected_results
            A dictionary mapping IMT-objects to one-element arrays of expected
            result values. Those results represent either standard deviation
            or mean value of corresponding IMT depending on ``result_type``.
        result_type
            A string literal, one of ``'STDDEV'`` or ``'MEAN'``. Value
            is taken from column ``result_type``.
    """
    rctx = RuptureContext()
    sctx = SitesContext(slots=req_site_params)
    dctx = DistancesContext()
    expected_results = {}
    stddev_types = result_type = damping = None

    for param, value in zip(headers, values):

        if param == 'result_type':
            value = value.upper()
            if value.endswith('_STDDEV'):
                # the row defines expected stddev results
                result_type = 'STDDEV'
                stddev_types = [getattr(const.StdDev, value[:-len('_STDDEV')])]
            else:
                # the row defines expected exponents of mean values
                assert value == 'MEAN'
                stddev_types = []
                result_type = 'MEAN'
        elif param == 'damping':
            damping = float(value)
        elif param.startswith('site_'):
            # value is sites context object attribute
            if param == 'site_vs30measured' or param == 'site_backarc':
                value = float(value) != 0
            elif param in ('site_siteclass', 'site_ec8', 'site_ec8_p18',
                           'site_geology'):
                value = numpy.string_(value)
            else:
                value = float(value)
            # site_lons, site_lats, site_depths -> lon, lat, depth
            if param.endswith(('lons', 'lats', 'depths')):
                attr = param[len('site_'):-1]
            else:  # vs30s etc
                attr = param[len('site_'):]
            setattr(sctx, attr, numpy.array([value]))
        elif param.startswith('dist_'):
            # value is a distance measure
            value = float(value)
            setattr(dctx, param[len('dist_'):], numpy.array([value]))
        elif param.startswith('rup_'):
            # value is a rupture context attribute
            try:
                value = float(value)
            except ValueError:
                if value != 'undefined':
                    raise

            setattr(rctx, param[len('rup_'):], value)
        elif param == 'component_type':
            pass
        else:
            # value is the expected result (of result_type type)
            value = float(value)

            if param == 'arias':  # ugly legacy corner case
                param = 'ia'
            if param == 'avgsa':
                imt = from_string('AvgSA')
            else:
                try:  # The title of the column should be IMT(args)
                    imt = from_string(param.upper())
                except KeyError:  # Then it is just a period for SA
                    imt = registry['SA'](float(param), damping)

            expected_results[imt] = numpy.array([value])

    assert result_type is not None
    return sctx, rctx, dctx, stddev_types, expected_results, result_type
コード例 #2
0
def _parse_csv_line(headers, values):
    """
    Parse a single line from data file.

    :param headers:
        A list of header names, the strings from the first line of csv file.
    :param values:
        A list of values of a single row to parse.
    :returns:
        A tuple of the following values (in specified order):

        sctx
            An instance of :class:`openquake.hazardlib.gsim.base.SitesContext`
            with attributes populated by the information from in row in a form
            of single-element numpy arrays.
        rctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.RuptureContext`.
        dctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.DistancesContext`.
        stddev_types
            An empty list, if the ``result_type`` column says "MEAN"
            for that row, otherwise it is a list with one item --
            a requested standard deviation type.
        expected_results
            A dictionary mapping IMT-objects to one-element arrays of expected
            result values. Those results represent either standard deviation
            or mean value of corresponding IMT depending on ``result_type``.
        result_type
            A string literal, one of ``'STDDEV'`` or ``'MEAN'``. Value
            is taken from column ``result_type``.
    """
    rctx = RuptureContext()
    sctx = SitesContext()
    dctx = DistancesContext()
    expected_results = {}
    stddev_types = result_type = damping = None

    for param, value in zip(headers, values):
        if param == 'result_type':
            value = value.upper()
            if value.endswith('_STDDEV'):
                # the row defines expected stddev results
                result_type = 'STDDEV'
                stddev_types = [getattr(const.StdDev, value[:-len('_STDDEV')])]
            else:
                # the row defines expected exponents of mean values
                assert value == 'MEAN'
                stddev_types = []
                result_type = 'MEAN'
        elif param == 'damping':
            damping = float(value)
        elif param.startswith('site_'):
            # value is sites context object attribute
            if (param == 'site_vs30measured') or (param == 'site_backarc'):
                value = float(value) != 0
            else:
                value = float(value)
            setattr(sctx, param[len('site_'):], numpy.array([value]))
        elif param.startswith('dist_'):
            # value is a distance measure
            value = float(value)
            setattr(dctx, param[len('dist_'):], numpy.array([value]))
        elif param.startswith('rup_'):
            # value is a rupture context attribute
            value = float(value)
            setattr(rctx, param[len('rup_'):], value)
        elif param == 'component_type':
            pass
        else:
            # value is the expected result (of result_type type)
            value = float(value)
            if param == 'pga':
                imt = PGA()
            elif param == 'pgv':
                imt = PGV()
            elif param == 'pgd':
                imt = PGD()
            elif param == 'cav':
                imt = CAV()
            elif param == 'mmi':
                imt = MMI()
            elif param == "arias":
                imt = IA()
            elif param == "rsd595":
                imt = RSD595()
            elif param == "rsd575":
                imt = RSD575()
            elif param == "rsd2080":
                imt = RSD2080()
            else:
                period = float(param)
                assert damping is not None
                imt = SA(period, damping)

            expected_results[imt] = numpy.array([value])

    assert result_type is not None
    return sctx, rctx, dctx, stddev_types, expected_results, result_type