コード例 #1
0
ファイル: disagg.py プロジェクト: ROB-Seismology/oq-hazardlib
def _arrange_data_in_bins(bins_data, bin_edges):
    """
    Given bins data, as it comes from :func:`_collect_bins_data`, and bin edges
    from :func:`_define_bins`, create a normalized 6d disaggregation matrix.
    """
    (mags, dists, lons, lats, tect_reg_types, trt_bins, probs_one_or_more,
     probs_exceed_given_rup, src_idxs) = bins_data
    mag_bins, dist_bins, lon_bins, lat_bins, eps_bins, trt_bins = bin_edges
    shape = (len(mag_bins) - 1, len(dist_bins) - 1, len(lon_bins) - 1,
             len(lat_bins) - 1, len(eps_bins) - 1, len(trt_bins))
    diss_matrix = numpy.zeros(shape)

    src_indices = numpy.unique(src_idxs)

    for i_mag in xrange(len(mag_bins) - 1):
        mag_idx = mags <= mag_bins[i_mag + 1]
        if i_mag != 0:
            mag_idx &= mags > mag_bins[i_mag]

        for i_dist in xrange(len(dist_bins) - 1):
            dist_idx = dists <= dist_bins[i_dist + 1]
            if i_dist != 0:
                dist_idx &= dists > dist_bins[i_dist]

            for i_lon in xrange(len(lon_bins) - 1):
                extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
                lon_idx = extents >= 0
                if i_lon != 0:
                    extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                    lon_idx &= extents > 0

                for i_lat in xrange(len(lat_bins) - 1):
                    lat_idx = lats <= lat_bins[i_lat + 1]
                    if i_lat != 0:
                        lat_idx &= lats > lat_bins[i_lat]

                    for i_eps in xrange(len(eps_bins) - 1):

                        for i_trt in xrange(len(trt_bins)):
                            trt_idx = tect_reg_types == i_trt

                            diss_idx = (i_mag, i_dist, i_lon,
                                        i_lat, i_eps, i_trt)

                            prob_idx = (mag_idx & dist_idx & lon_idx
                                        & lat_idx & trt_idx)

                            poe = numpy.prod(
                                (1 - probs_one_or_more[prob_idx]) **
                                probs_exceed_given_rup[prob_idx, i_eps]
                            )
                            poe = 1 - poe

                            diss_matrix[diss_idx] = poe

    return diss_matrix
コード例 #2
0
ファイル: disagg.py プロジェクト: glenn-rix/oq-hazardlib
def _arrange_data_in_bins(bins_data, bin_edges):
    """
    Given bins data, as it comes from :func:`_collect_bins_data`, and bin edges
    from :func:`_define_bins`, create a normalized 6d disaggregation matrix.
    """
    (mags, dists, lons, lats, tect_reg_types, trt_bins, probs_one_or_more,
     probs_exceed_given_rup, src_idxs) = bins_data
    mag_bins, dist_bins, lon_bins, lat_bins, eps_bins, trt_bins = bin_edges
    shape = (len(mag_bins) - 1, len(dist_bins) - 1, len(lon_bins) - 1,
             len(lat_bins) - 1, len(eps_bins) - 1, len(trt_bins))
    diss_matrix = numpy.zeros(shape)

    src_indices = numpy.unique(src_idxs)

    for i_mag in xrange(len(mag_bins) - 1):
        mag_idx = mags <= mag_bins[i_mag + 1]
        if i_mag != 0:
            mag_idx &= mags > mag_bins[i_mag]

        for i_dist in xrange(len(dist_bins) - 1):
            dist_idx = dists <= dist_bins[i_dist + 1]
            if i_dist != 0:
                dist_idx &= dists > dist_bins[i_dist]

            for i_lon in xrange(len(lon_bins) - 1):
                extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
                lon_idx = extents >= 0
                if i_lon != 0:
                    extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                    lon_idx &= extents > 0

                for i_lat in xrange(len(lat_bins) - 1):
                    lat_idx = lats <= lat_bins[i_lat + 1]
                    if i_lat != 0:
                        lat_idx &= lats > lat_bins[i_lat]

                    for i_eps in xrange(len(eps_bins) - 1):

                        for i_trt in xrange(len(trt_bins)):
                            trt_idx = tect_reg_types == i_trt

                            diss_idx = (i_mag, i_dist, i_lon, i_lat, i_eps,
                                        i_trt)

                            prob_idx = (mag_idx & dist_idx & lon_idx
                                        & lat_idx & trt_idx)

                            poe = numpy.prod(
                                (1 - probs_one_or_more[prob_idx]
                                 )**probs_exceed_given_rup[prob_idx, i_eps])
                            poe = 1 - poe

                            diss_matrix[diss_idx] = poe

    return diss_matrix
コード例 #3
0
ファイル: disagg.py プロジェクト: gongshimin/oq-hazardlib
def _arrange_data_in_bins(bins_data, bin_edges):
    """
    Given bins data, as it comes from :func:`_collect_bins_data`, and bin edges
    from :func:`_define_bins`, create a normalized 6d disaggregation matrix.
    """
    mags, dists, lons, lats, joint_probs, tect_reg_types, trt_bins = bins_data
    mag_bins, dist_bins, lon_bins, lat_bins, eps_bins, trt_bins = bin_edges
    shape = (len(mag_bins) - 1, len(dist_bins) - 1, len(lon_bins) - 1,
             len(lat_bins) - 1, len(eps_bins) - 1, len(trt_bins))
    diss_matrix = numpy.zeros(shape)

    for i_mag in xrange(len(mag_bins) - 1):
        mag_idx = mags <= mag_bins[i_mag + 1]
        if i_mag != 0:
            mag_idx &= mags > mag_bins[i_mag]

        for i_dist in xrange(len(dist_bins) - 1):
            dist_idx = dists <= dist_bins[i_dist + 1]
            if i_dist != 0:
                dist_idx &= dists > dist_bins[i_dist]

            for i_lon in xrange(len(lon_bins) - 1):
                extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
                lon_idx = extents >= 0
                if i_lon != 0:
                    extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                    lon_idx &= extents > 0

                for i_lat in xrange(len(lat_bins) - 1):
                    lat_idx = lats <= lat_bins[i_lat + 1]
                    if i_lat != 0:
                        lat_idx &= lats > lat_bins[i_lat]

                    for i_eps in xrange(len(eps_bins) - 1):

                        for i_trt in xrange(len(trt_bins)):
                            trt_idx = tect_reg_types == i_trt

                            prob_idx = (mag_idx & dist_idx & lon_idx
                                        & lat_idx & trt_idx)
                            diss_idx = (i_mag, i_dist, i_lon,
                                        i_lat, i_eps, i_trt)

                            diss_matrix[diss_idx] = numpy.sum(
                                joint_probs[prob_idx, i_eps]
                            )

    diss_matrix /= numpy.sum(diss_matrix)

    return diss_matrix
コード例 #4
0
ファイル: disagg.py プロジェクト: nackerley/oq-hazardlib
def _define_bins(bins_data, mag_bin_width, dist_bin_width, coord_bin_width, truncation_level, n_epsilons):
    """
    Define bin edges for disaggregation histograms.

    Given bins data as provided by :func:`_collect_bins_data`, this function
    finds edges of histograms, taking into account maximum and minimum values
    of magnitude, distance and coordinates as well as requested sizes/numbers
    of bins.
    """
    mags, dists, lons, lats, tect_reg_types, trt_bins, _ = bins_data

    mag_bins = mag_bin_width * numpy.arange(
        int(numpy.floor(mags.min() / mag_bin_width)), int(numpy.ceil(mags.max() / mag_bin_width) + 1)
    )

    dist_bins = dist_bin_width * numpy.arange(
        int(numpy.floor(dists.min() / dist_bin_width)), int(numpy.ceil(dists.max() / dist_bin_width) + 1)
    )

    west, east, north, south = get_spherical_bounding_box(lons, lats)
    west = numpy.floor(west / coord_bin_width) * coord_bin_width
    east = numpy.ceil(east / coord_bin_width) * coord_bin_width
    lon_extent = get_longitudinal_extent(west, east)
    lon_bins, _, _ = npoints_between(west, 0, 0, east, 0, 0, numpy.round(lon_extent / coord_bin_width + 1))

    lat_bins = coord_bin_width * numpy.arange(
        int(numpy.floor(south / coord_bin_width)), int(numpy.ceil(north / coord_bin_width) + 1)
    )

    eps_bins = numpy.linspace(-truncation_level, truncation_level, n_epsilons + 1)

    return mag_bins, dist_bins, lon_bins, lat_bins, eps_bins, trt_bins
コード例 #5
0
ファイル: core.py プロジェクト: marmarques/oq-engine
    def bins_edges(self, dist_bin_width, coord_bin_width):
        """
        Define bin edges for disaggregation histograms, from the bin data
        collected from the ruptures.

        :param dists:
            array of distances from the ruptures
        :param lons:
            array of longitudes from the ruptures
        :param lats:
            array of latitudes from the ruptures
        :param dist_bin_width:
            distance_bin_width from job.ini
        :param coord_bin_width:
            coordinate_bin_width from job.ini
        """
        dist_edges = dist_bin_width * numpy.arange(
            int(self.min_dist / dist_bin_width),
            int(numpy.ceil(self.max_dist / dist_bin_width) + 1))

        west = numpy.floor(self.west / coord_bin_width) * coord_bin_width
        east = numpy.ceil(self.east / coord_bin_width) * coord_bin_width
        lon_extent = get_longitudinal_extent(west, east)

        lon_edges, _, _ = npoints_between(
            west, 0, 0, east, 0, 0,
            numpy.round(lon_extent / coord_bin_width) + 1)

        lat_edges = coord_bin_width * numpy.arange(
            int(numpy.floor(self.south / coord_bin_width)),
            int(numpy.ceil(self.north / coord_bin_width) + 1))

        return dist_edges, lon_edges, lat_edges
コード例 #6
0
ファイル: disagg.py プロジェクト: ozkankale/oq-hazardlib
def _define_bins(bins_data, mag_bin_width, dist_bin_width, coord_bin_width,
                 truncation_level, n_epsilons):
    """
    Define bin edges for disaggregation histograms.

    Given bins data as provided by :func:`_collect_bins_data`, this function
    finds edges of histograms, taking into account maximum and minimum values
    of magnitude, distance and coordinates as well as requested sizes/numbers
    of bins.
    """
    mags, dists, lons, lats, tect_reg_types, trt_bins, _ = bins_data

    mag_bins = mag_bin_width * numpy.arange(
        int(numpy.floor(mags.min() / mag_bin_width)),
        int(numpy.ceil(mags.max() / mag_bin_width) + 1))

    dist_bins = dist_bin_width * numpy.arange(
        int(numpy.floor(dists.min() / dist_bin_width)),
        int(numpy.ceil(dists.max() / dist_bin_width) + 1))

    west, east, north, south = get_spherical_bounding_box(lons, lats)
    west = numpy.floor(west / coord_bin_width) * coord_bin_width
    east = numpy.ceil(east / coord_bin_width) * coord_bin_width
    lon_extent = get_longitudinal_extent(west, east)
    lon_bins, _, _ = npoints_between(
        west, 0, 0, east, 0, 0, numpy.round(lon_extent / coord_bin_width + 1))

    lat_bins = coord_bin_width * numpy.arange(
        int(numpy.floor(south / coord_bin_width)),
        int(numpy.ceil(north / coord_bin_width) + 1))

    eps_bins = numpy.linspace(-truncation_level, truncation_level,
                              n_epsilons + 1)

    return mag_bins, dist_bins, lon_bins, lat_bins, eps_bins, trt_bins
コード例 #7
0
ファイル: filters.py プロジェクト: mascandola/oq-engine
 def close_sids(self, src_or_rec, trt=None, maxdist=None):
     """
     :param src_or_rec: a source or a rupture record
     :param trt: passed only if src_or_rec is a rupture record
     :returns:
        the site indices within the maximum_distance of the hypocenter,
        plus the maximum size of the bounding box
     """
     assert self.sitecol is not None
     if not self.integration_distance:  # do not filter
         return self.sitecol.sids
     if trt:  # rupture proxy
         assert hasattr(self.integration_distance, 'x')
         dlon = get_longitudinal_extent(src_or_rec['minlon'],
                                        src_or_rec['maxlon']) / 2.
         dlat = (src_or_rec['maxlat'] - src_or_rec['minlat']) / 2.
         lon, lat, dep = src_or_rec['hypo']
         dist = self.integration_distance(
             src_or_rec['mag']) + numpy.sqrt(dlon**2 +
                                             dlat**2) / KM_TO_DEGREES
         dist += 10  # added 10 km of buffer to guard against numeric errors
         # the test most sensitive to the buffer effect is in oq-risk-tests,
         # case_ucerf/job_eb.ini; without buffer, sites can be discarded
         # even if within the maximum_distance
         return self._close_sids(lon, lat, dep, dist)
     else:  # source
         trt = src_or_rec.tectonic_region_type
         try:
             bbox = self.get_enlarged_box(src_or_rec, maxdist)
         except BBoxError:  # do not filter
             return self.sitecol.sids
         return self.sitecol.within_bbox(bbox)
コード例 #8
0
    def bins_edges(self, dist_bin_width, coord_bin_width):
        """
        Define bin edges for disaggregation histograms, from the bin data
        collected from the ruptures.

        :param dists:
            array of distances from the ruptures
        :param lons:
            array of longitudes from the ruptures
        :param lats:
            array of latitudes from the ruptures
        :param dist_bin_width:
            distance_bin_width from job.ini
        :param coord_bin_width:
            coordinate_bin_width from job.ini
        """
        dist_edges = dist_bin_width * numpy.arange(
            int(self.min_dist / dist_bin_width),
            int(numpy.ceil(self.max_dist / dist_bin_width) + 1))

        west = numpy.floor(self.west / coord_bin_width) * coord_bin_width
        east = numpy.ceil(self.east / coord_bin_width) * coord_bin_width
        lon_extent = get_longitudinal_extent(west, east)

        lon_edges, _, _ = npoints_between(
            west, 0, 0, east, 0, 0,
            numpy.round(lon_extent / coord_bin_width) + 1)

        lat_edges = coord_bin_width * numpy.arange(
            int(numpy.floor(self.south / coord_bin_width)),
            int(numpy.ceil(self.north / coord_bin_width) + 1))

        return dist_edges, lon_edges, lat_edges
コード例 #9
0
ファイル: filters.py プロジェクト: ispingos/oq-engine
 def close_sids(self, rec, trt):
     """
     :param rec:
        a record with fields mag, minlon, minlat, maxlon, maxlat, hypo
     :param trt:
        tectonic region type string
     :returns:
        the site indices close to the given record, by considering as
        maximum radius the distance from the hypocenter (ignoring the depth)
        plus the half diagonal of the bounding box
     """
     if self.sitecol is None:
         return []
     elif not self.integration_distance:  # do not filter
         return self.sitecol.sids
     if not hasattr(self, 'kdt'):
         self.kdt = cKDTree(self.sitecol.xyz)
     xyz = spherical_to_cartesian(*rec['hypo'])
     dlon = get_longitudinal_extent(rec['minlon'], rec['maxlon'])
     dlat = rec['maxlat'] - rec['minlat']
     delta = max(dlon, dlat) / KM_TO_DEGREES
     maxradius = self.integration_distance(trt) + delta
     sids = U16(self.kdt.query_ball_point(xyz, maxradius, eps=.001))
     sids.sort()
     return sids
コード例 #10
0
def _digitize_lons(lons, lon_bins):
    """
    Return indices of the bins to which each value in lons belongs.
    Takes into account the case in which longitude values cross the
    international date line.
    """
    if cross_idl(lon_bins[0], lon_bins[-1]):
        idx = []
        for i_lon in range(len(lon_bins) - 1):
            extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
            lon_idx = extents > 0
            if i_lon != 0:
                extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                lon_idx &= extents >= 0
            idx.append(lon_idx)
        return numpy.array(idx)
    else:
        return numpy.digitize(lons, lon_bins) - 1
コード例 #11
0
ファイル: disagg.py プロジェクト: larsbutler/oq-hazardlib
def _digitize_lons(lons, lon_bins):
    """
    Return indices of the bins to which each value in lons belongs.
    Takes into account the case in which longitude values cross the
    international date line.
    """
    if cross_idl(lon_bins[0], lon_bins[-1]):
        idx = []
        for i_lon in xrange(len(lon_bins) - 1):
            extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
            lon_idx = extents > 0
            if i_lon != 0:
                extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                lon_idx &= extents >= 0
            idx.append(lon_idx)
        return numpy.array(idx)
    else:
        return numpy.digitize(lons, lon_bins) - 1
コード例 #12
0
    def test_polygon_on_international_date_line(self):
        MESH_SPACING = 10
        bl = geo.Point(177, 40)
        bml = geo.Point(179, 40)
        bmr = geo.Point(-179, 40)
        br = geo.Point(-177, 40)
        tr = geo.Point(-177, 43)
        tmr = geo.Point(-179, 43)
        tml = geo.Point(179, 43)
        tl = geo.Point(177, 43)
        poly = geo.Polygon([bl, bml, bmr, br, tr, tmr, tml, tl])
        mesh = list(poly.discretize(mesh_spacing=MESH_SPACING))

        west = east = mesh[0]
        for point in mesh:
            if geo_utils.get_longitudinal_extent(point.longitude, west.longitude) > 0:
                west = point
            if geo_utils.get_longitudinal_extent(point.longitude, east.longitude) < 0:
                east = point

        self.assertLess(west.longitude, 177.15)
        self.assertGreater(east.longitude, -177.15)
コード例 #13
0
def _digitize_lons(lons, lon_bins):
    """
    Return indices of the bins to which each value in lons belongs.
    Takes into account the case in which longitude values cross the
    international date line.

    :parameter lons:
        An instance of `numpy.ndarray`.
    :parameter lons_bins:
        An instance of `numpy.ndarray`.
    """
    if cross_idl(lon_bins[0], lon_bins[-1]):
        idx = numpy.zeros_like(lons, dtype=numpy.int)
        for i_lon in range(len(lon_bins) - 1):
            extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
            lon_idx = extents > 0
            if i_lon != 0:
                extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                lon_idx &= extents >= 0
            idx[lon_idx] = i_lon
        return numpy.array(idx)
    else:
        return numpy.digitize(lons, lon_bins) - 1
コード例 #14
0
ファイル: disagg.py プロジェクト: fiorellalan/oq-hazardlib
def _digitize_lons(lons, lon_bins):
    """
    Return indices of the bins to which each value in lons belongs.
    Takes into account the case in which longitude values cross the
    international date line.

    :parameter lons:
        An instance of :mod:`numpy.array`. 
    :parameter lons_bins:
        An instance of :mod:`numpy.array`. 
    """
    if cross_idl(lon_bins[0], lon_bins[-1]):
        idx = numpy.zeros_like(lons, dtype=numpy.int)
        for i_lon in range(len(lon_bins) - 1):
            extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
            lon_idx = extents > 0
            if i_lon != 0:
                extents = get_longitudinal_extent(lon_bins[i_lon], lons)
                lon_idx &= extents >= 0
            idx[lon_idx] = i_lon
        return numpy.array(idx)
    else:
        return numpy.digitize(lons, lon_bins) - 1
コード例 #15
0
ファイル: polygon_test.py プロジェクト: vhmar/oq-engine
    def test_polygon_on_international_date_line(self):
        MESH_SPACING = 10
        bl = geo.Point(177, 40)
        bml = geo.Point(179, 40)
        bmr = geo.Point(-179, 40)
        br = geo.Point(-177, 40)
        tr = geo.Point(-177, 43)
        tmr = geo.Point(-179, 43)
        tml = geo.Point(179, 43)
        tl = geo.Point(177, 43)
        poly = geo.Polygon([bl, bml, bmr, br, tr, tmr, tml, tl])
        mesh = list(poly.discretize(mesh_spacing=MESH_SPACING))

        west = east = mesh[0]
        for point in mesh:
            if geo_utils.get_longitudinal_extent(point.longitude,
                                                 west.longitude) > 0:
                west = point
            if geo_utils.get_longitudinal_extent(point.longitude,
                                                 east.longitude) < 0:
                east = point

        self.assertLess(west.longitude, 177.15)
        self.assertGreater(east.longitude, -177.15)
コード例 #16
0
ファイル: disagg.py プロジェクト: ventycn/oq-engine
def lon_lat_bins(bb, coord_bin_width):
    """
    Define lon, lat bin edges for disaggregation histograms.

    :param bb: bounding box west, south, east, north
    :param coord_bin_width: bin width
    """
    west, south, east, north = bb
    west = numpy.floor(west / coord_bin_width) * coord_bin_width
    east = numpy.ceil(east / coord_bin_width) * coord_bin_width
    lon_extent = get_longitudinal_extent(west, east)
    lon_bins, _, _ = npoints_between(
        west, 0, 0, east, 0, 0, numpy.round(lon_extent / coord_bin_width + 1))
    lat_bins = coord_bin_width * numpy.arange(
        int(numpy.floor(south / coord_bin_width)),
        int(numpy.ceil(north / coord_bin_width) + 1))
    return lon_bins, lat_bins
コード例 #17
0
ファイル: polygon.py プロジェクト: MaksimEritov/oq-hazardlib
    def discretize(self, mesh_spacing):
        """
        Get a mesh of uniformly spaced points inside the polygon area
        with distance of ``mesh_spacing`` km between.

        :returns:
            An instance of :class:`~openquake.hazardlib.geo.mesh.Mesh` that
            holds the points data. Mesh is created with no depth information
            (all the points are on the Earth surface).
        """
        self._init_polygon2d()

        west, east, north, south = self._bbox

        lons = []
        lats = []

        # we cover the bounding box (in spherical coordinates) from highest
        # to lowest latitude and from left to right by longitude. we step
        # by mesh spacing distance (linear measure). we check each point
        # if it is inside the polygon and yield the point object, if so.
        # this way we produce an uniformly-spaced mesh regardless of the
        # latitude.
        latitude = north
        while latitude > south:
            longitude = west
            while utils.get_longitudinal_extent(longitude, east) > 0:
                # we use Cartesian space just for checking if a point
                # is inside of the polygon.
                x, y = self._projection(longitude, latitude)
                if self._polygon2d.contains(shapely.geometry.Point(x, y)):
                    lons.append(longitude)
                    lats.append(latitude)

                # move by mesh spacing along parallel...
                longitude, _, = geodetic.point_at(longitude, latitude,
                                                  90, mesh_spacing)
            # ... and by the same distance along meridian in outer one
            _, latitude = geodetic.point_at(west, latitude, 180, mesh_spacing)

        lons = numpy.array(lons)
        lats = numpy.array(lats)

        return Mesh(lons, lats, depths=None)
コード例 #18
0
ファイル: polygon.py プロジェクト: larsbutler/oq-hazardlib
    def discretize(self, mesh_spacing):
        """
        Get a mesh of uniformly spaced points inside the polygon area
        with distance of ``mesh_spacing`` km between.

        :returns:
            An instance of :class:`~openquake.hazardlib.geo.mesh.Mesh` that
            holds the points data. Mesh is created with no depth information
            (all the points are on the Earth surface).
        """
        self._init_polygon2d()

        west, east, north, south = self._bbox

        lons = []
        lats = []

        # we cover the bounding box (in spherical coordinates) from highest
        # to lowest latitude and from left to right by longitude. we step
        # by mesh spacing distance (linear measure). we check each point
        # if it is inside the polygon and yield the point object, if so.
        # this way we produce an uniformly-spaced mesh regardless of the
        # latitude.
        latitude = north
        while latitude > south:
            longitude = west
            while utils.get_longitudinal_extent(longitude, east) > 0:
                # we use Cartesian space just for checking if a point
                # is inside of the polygon.
                x, y = self._projection(longitude, latitude)
                if self._polygon2d.contains(shapely.geometry.Point(x, y)):
                    lons.append(longitude)
                    lats.append(latitude)

                # move by mesh spacing along parallel...
                longitude, _, = geodetic.point_at(longitude, latitude, 90,
                                                  mesh_spacing)
            # ... and by the same distance along meridian in outer one
            _, latitude = geodetic.point_at(west, latitude, 180, mesh_spacing)

        lons = numpy.array(lons)
        lats = numpy.array(lats)

        return Mesh(lons, lats, depths=None)
コード例 #19
0
def lon_lat_bins(bb, coord_bin_width):
    """
    Define bin edges for disaggregation histograms.

    Given bins data as provided by :func:`collect_bin_data`, this function
    finds edges of histograms, taking into account maximum and minimum values
    of magnitude, distance and coordinates as well as requested sizes/numbers
    of bins.
    """
    west, south, east, north = bb
    west = numpy.floor(west / coord_bin_width) * coord_bin_width
    east = numpy.ceil(east / coord_bin_width) * coord_bin_width
    lon_extent = get_longitudinal_extent(west, east)
    lon_bins, _, _ = npoints_between(
        west, 0, 0, east, 0, 0, numpy.round(lon_extent / coord_bin_width + 1))
    lat_bins = coord_bin_width * numpy.arange(
        int(numpy.floor(south / coord_bin_width)),
        int(numpy.ceil(north / coord_bin_width) + 1))
    return lon_bins, lat_bins
コード例 #20
0
ファイル: disagg.py プロジェクト: digitalsatori/oq-engine
def lon_lat_bins(bb, coord_bin_width):
    """
    Define bin edges for disaggregation histograms.

    Given bins data as provided by :func:`collect_bin_data`, this function
    finds edges of histograms, taking into account maximum and minimum values
    of magnitude, distance and coordinates as well as requested sizes/numbers
    of bins.
    """
    west, south, east, north = bb
    west = numpy.floor(west / coord_bin_width) * coord_bin_width
    east = numpy.ceil(east / coord_bin_width) * coord_bin_width
    lon_extent = get_longitudinal_extent(west, east)
    lon_bins, _, _ = npoints_between(
        west, 0, 0, east, 0, 0,
        numpy.round(lon_extent / coord_bin_width + 1))
    lat_bins = coord_bin_width * numpy.arange(
        int(numpy.floor(south / coord_bin_width)),
        int(numpy.ceil(north / coord_bin_width) + 1))
    return lon_bins, lat_bins
コード例 #21
0
ファイル: filters.py プロジェクト: ARosemary/oq-engine
 def close_sids(self, src_or_rec, trt=None):
     """
     :param src_or_rec: a source or a rupture record
     :param trt: passed only if src_or_rec is a rupture record
     :returns:
        the site indices within the maximum_distance of the hypocenter,
        plus the maximum size of the bounding box
     """
     if self.sitecol is None:
         return []
     elif not self.integration_distance:  # do not filter
         return self.sitecol.sids
     if not hasattr(self, 'kdt'):
         self.kdt = cKDTree(self.sitecol.xyz)
     if trt:  # rupture, called by GmfGetter.gen_computers
         dlon = get_longitudinal_extent(
             src_or_rec['minlon'], src_or_rec['maxlon']) / 2.
         dlat = (src_or_rec['maxlat'] - src_or_rec['minlat']) / 2.
         lon, lat, dep = src_or_rec['hypo']
         dist = self.integration_distance(trt) + numpy.sqrt(
             dlon**2 + dlat**2) / KM_TO_DEGREES
         dist += 10  # added 10 km of buffer to guard against numeric errors
         # the test most sensitive to the buffer effect is in oq-risk-tests,
         # case_ucerf/job_eb.ini; without buffer, sites can be discarded
         # even if within the maximum_distance
     else:  # source
         trt = src_or_rec.tectonic_region_type
         try:
             bbox = self.integration_distance.get_enlarged_box(src_or_rec)
         except BBoxError:  # do not filter
             return self.sitecol.sids
         dlon, dlat = (bbox[2] - bbox[0]) / 2., (bbox[3] - bbox[1]) / 2.
         lon, lat, dep = (
             (bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2, 0)
         dist = numpy.sqrt(dlon**2 + dlat**2) / KM_TO_DEGREES
     xyz = spherical_to_cartesian(lon, lat, dep)
     sids = U32(self.kdt.query_ball_point(xyz, dist, eps=.001))
     sids.sort()
     return sids
コード例 #22
0
ファイル: utils_test.py プロジェクト: gongshimin/oq-hazardlib
 def test_positive(self):
     self.assertEqual(utils.get_longitudinal_extent(10, 20), 10)
     self.assertEqual(utils.get_longitudinal_extent(-120, 30), 150)
コード例 #23
0
ファイル: utils_test.py プロジェクト: gongshimin/oq-hazardlib
 def test_negative(self):
     self.assertEqual(utils.get_longitudinal_extent(20, 10), -10)
     self.assertEqual(utils.get_longitudinal_extent(-10, -15), -5)
コード例 #24
0
ファイル: utils_test.py プロジェクト: gongshimin/oq-hazardlib
    def test_international_date_line(self):
        self.assertEqual(utils.get_longitudinal_extent(-178.3, 177.7), -4)
        self.assertEqual(utils.get_longitudinal_extent(177.7, -178.3), 4)

        self.assertEqual(utils.get_longitudinal_extent(95, -180 + 94), 179)
        self.assertEqual(utils.get_longitudinal_extent(95, -180 + 96), -179)
コード例 #25
0
ファイル: utils_test.py プロジェクト: vhmar/oq-engine
 def test_positive(self):
     self.assertEqual(utils.get_longitudinal_extent(10, 20), 10)
     self.assertEqual(utils.get_longitudinal_extent(-120, 30), 150)
コード例 #26
0
ファイル: utils_test.py プロジェクト: vhmar/oq-engine
    def test_international_date_line(self):
        self.assertEqual(utils.get_longitudinal_extent(-178.3, 177.7), -4)
        self.assertEqual(utils.get_longitudinal_extent(177.7, -178.3), 4)

        self.assertEqual(utils.get_longitudinal_extent(95, -180 + 94), 179)
        self.assertEqual(utils.get_longitudinal_extent(95, -180 + 96), -179)
コード例 #27
0
ファイル: utils_test.py プロジェクト: vhmar/oq-engine
 def test_negative(self):
     self.assertEqual(utils.get_longitudinal_extent(20, 10), -10)
     self.assertEqual(utils.get_longitudinal_extent(-10, -15), -5)