コード例 #1
0
def main():
    gmpe = ngaw2()
    ipe = AllenEtAl2012()

    event_ids = np.unique(SHAKE_DF['event_id'])

    i = 0

    event_id = event_ids[i]
    idx = np.where(SHAKE_DF['event_id'] == event_id)[0]

    rx = base.RuptureContext()
    rx.mag = np.array(SHAKE_DF['magnitude'])[idx]
    rx.ztor = np.array(SHAKE_DF['ztor'])[idx]
    rx.rake = np.full_like(rx.mag)
    rx.width =
    rx.hypo_depth = np.array(SHAKE_DF['hypo_depth'])[idx]

    sx = base.SitesContext()
    sx.vs30 = np.array(SHAKE_DF['CA Vs30'])[idx]

    dx = base.DistancesContext()
    dx.rjb = np.array(SHAKE_DF['r_jb'])[idx]
    dx.rrup = np.array(SHAKE_DF['r_rup'])[idx]
    dx.rx = np.array(SHAKE_DF['r_x'])[idx]
    dx.ry = np.array(SHAKE_DF['r_y'])[idx]
    dx.ry0 = np.array(SHAKE_DF['r_y0'])[idx]

    lmean, lsd = gmpe.get_mean_and_stddevs(
        sx, rx, dx, imt=IMTS[j], stddev_types=STD)
コード例 #2
0
    def getRuptureContext(self, gmpelist):
        """
        Return an Openquake 
        `RuptureContext <http://docs.openquake.org/oq-hazardlib/master/gsim/index.html#openquake.hazardlib.gsim.base.RuptureContext>`__
        suitable for any GMPE (except for those requiring hypo_loc).

        If Source does not contain a Fault, strike, dip, ztor, and width will be
        filled with default values. Rake may not be known, or may be estimated
        from a focal mechanism.

        :param gmpelist:
            Sequence of hazardlib GMPE objects.
        :raises:
            ShakeMapException when a GMPE requiring 'hypo_loc' is passed in.
        :returns:
            RuptureContext object with all known parameters filled in.
        """
        # rupturecontext constructor inputs:
        # 'mag', 'strike', 'dip', 'rake', 'ztor', 'hypo_lon', 'hypo_lat',
        # 'hypo_depth', 'width', 'hypo_loc'
        for gmpe in gmpelist:
            reqset = gmpe.REQUIRES_RUPTURE_PARAMETERS
            if 'hypo_loc' in reqset:
                raise ShakeMapException(
                    'Rupture parameter "hypo_loc" is not supported!')

        rup = base.RuptureContext()
        rup.mag = self.getEventParam('mag')
        if self._fault is not None:
            rup.strike = self._fault.getStrike()
            rup.dip = self._fault.getDip()
            rup.ztor = self._fault.getTopOfRupture()
            rup.width = self._fault.getWidth()
        else:
            rup.strike = DEFAULT_STRIKE
            rup.dip = self.getEventParam('dip')
            rup.ztor = DEFAULT_ZTOR
            rup.width = DEFAULT_WIDTH

        if 'rake' in self._event_dict:
            rup.rake = self.getEventParam('rake')
        elif 'mech' in self._event_dict:
            mech = self._event_dict['mech']
            rup.rake = RAKEDICT[mech]
        else:
            rup.rake = RAKEDICT['ALL']

        rup.hypo_lat = self.getEventParam('lat')
        rup.hypo_lon = self.getEventParam('lon')
        rup.hypo_depth = self.getEventParam('depth')
        return rup
コード例 #3
0
    def getRuptureContext(self, gmpelist):
        """
        Returns an Openquake `RuptureContext <http://docs.openquake.org/oq-hazardlib/master/gsim/index.html#openquake.hazardlib.gsim.base.RuptureContext>`__.

        Args:
            gmpelist (list): List of hazardlib GMPE objects.

        Returns:
            RuptureContext object with all known parameters filled in.

        """  # noqa

        origin = self._origin

        # rupturecontext constructor inputs:
        # 'mag', 'strike', 'dip', 'rake', 'ztor', 'hypo_lon', 'hypo_lat',
        # 'hypo_depth', 'width', 'hypo_loc'

        rx = base.RuptureContext()
        rx.mag = origin.mag
        rx.strike = self.getStrike()
        rx.dip = self.getDip()
        rx.ztor = self.getDepthToTop()
        rx.width = self.getWidth()

        if hasattr(origin, 'rake'):
            rx.rake = origin.rake
        elif hasattr(origin, 'mech'):
            mech = origin.mech
            rx.rake = constants.RAKEDICT[mech]
        else:
            rx.rake = constants.RAKEDICT['ALL']

        rx.hypo_lat = origin.lat
        rx.hypo_lon = origin.lon
        rx.hypo_depth = origin.depth

        return rx
コード例 #4
0
from openquake.hazardlib.gsim import base
import openquake.hazardlib.imt as imt
from openquake.hazardlib.const import StdDev

from shakelib.gmpe.nga_east import NGAEast

home_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(home_dir, 'nga_east_data')

stddev_types = [StdDev.TOTAL]
gmpe = NGAEast()

dx = base.DistancesContext()
dx.rrup = np.logspace(-1, np.log10(2000), 100)

rx = base.RuptureContext()
sx = base.SitesContext()

IMTS = [imt.PGA(), imt.PGV(), imt.SA(0.3), imt.SA(1.0), imt.SA(3.0)]

MAGS = [3, 5, 6, 7]

VS30 = [180, 380, 760, 2000]


def update_results():
    # To build the data for testing
    result = {}
    for i in IMTS:
        ikey = i.__str__()
        result[ikey] = {}
コード例 #5
0
def gmpe_avg(ztest):
    '''
    transforms cybershake dips and Rx
    
    Parameters
    ----------
    ztest: 2d numpy array of 12 feature data
    
    Returns
    -------
    model_avg: average of base model predictions in ln m/s2
    '''
    import numpy as np
    import openquake
    from openquake.hazardlib.gsim.abrahamson_2014 import AbrahamsonEtAl2014  #ASK
    from openquake.hazardlib.gsim.campbell_bozorgnia_2014 import CampbellBozorgnia2014  #CB
    from openquake.hazardlib.gsim.chiou_youngs_2014 import ChiouYoungs2014  #CY
    from openquake.hazardlib.gsim.boore_2014 import BooreEtAl2014  #BSSA
    import openquake.hazardlib.imt as imt
    from openquake.hazardlib.const import StdDev
    import openquake.hazardlib.gsim.base as base

    stddev_types = [StdDev.TOTAL]

    period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]

    gmpeBSSAdata = np.zeros((ztest.shape[0], len(period)))
    gmpeASKdata = np.zeros((ztest.shape[0], len(period)))
    gmpeCBdata = np.zeros((ztest.shape[0], len(period)))
    gmpeCYdata = np.zeros((ztest.shape[0], len(period)))

    gmpeBSSAstd = np.zeros((ztest.shape[0], len(period)))
    gmpeASKstd = np.zeros((ztest.shape[0], len(period)))
    gmpeCBstd = np.zeros((ztest.shape[0], len(period)))
    gmpeCYstd = np.zeros((ztest.shape[0], len(period)))

    gmpeASK = AbrahamsonEtAl2014()
    gmpeCB = CampbellBozorgnia2014()
    gmpeCY = ChiouYoungs2014()
    gmpeBSSA = BooreEtAl2014()

    for i in range(ztest.shape[0]):
        dx = base.DistancesContext()
        dx.rjb = np.array([ztest[i, 9]])

        #dx.rjb = np.logspace(-1, 2, 10)
        # Magnitude and rake
        rx = base.RuptureContext()
        rx.mag = np.array([ztest[i, 0]])
        rx.rake = np.array([ztest[i, 5]])
        rx.hypo_depth = np.array([ztest[i, 7]])
        # Vs30
        sx = base.SitesContext()
        sx.vs30 = np.array([ztest[i, 2]])
        sx.vs30measured = 0

        dx.rrup = np.array([ztest[i, 1]])
        rx.ztor = np.array([ztest[i, 11]])
        rx.dip = np.array([ztest[i, 6]])
        rx.width = np.array([ztest[i, 8]])
        # dx.rx=np.array([rxkeep[i]])
        dx.rx = np.array([ztest[i, 10]])

        dx.ry0 = np.array([0])
        sx.z1pt0 = np.array([ztest[i, 3]])
        sx.z2pt5 = np.array([ztest[i, 4]])

        # Evaluate GMPE
        #Unit of measure for Z1.0 is [m] (ASK)

        #for period1 in period:
        for ii in range(len(period)):
            sx.vs30measured = 0
            period1 = period[ii]
            gmpeBSSAdata[i, ii], g = gmpeBSSA.get_mean_and_stddevs(
                sx, rx, dx, imt.SA(period1), stddev_types)
            gmpeBSSAstd[i, ii] = g[0][0]

            gmpeCBdata[i, ii], g = gmpeCB.get_mean_and_stddevs(
                sx, rx, dx, imt.SA(period1), stddev_types)
            gmpeCBstd[i, ii] = g[0][0]

            gmpeCYdata[i, ii], g = gmpeCY.get_mean_and_stddevs(
                sx, rx, dx, imt.SA(period1), stddev_types)
            gmpeCYstd[i, ii] = g[0][0]

            sx.vs30measured = [0]
            gmpeASKdata[i, ii], g = gmpeASK.get_mean_and_stddevs(
                sx, rx, dx, imt.SA(period1), stddev_types)
            gmpeASKstd[i, ii] = g[0][0]

    model_avg = np.log(9.81 * np.exp(
        np.mean([gmpeBSSAdata, gmpeCBdata, gmpeCYdata, gmpeASKdata], axis=0)))

    #outputs ln m/s2
    return model_avg