コード例 #1
0
    def check_gmpe_adjustments(self, adj_gmpe_set, original_gmpe):
        """
        Takes a set of three adjusted GMPEs representing the "low", "middle"
        and "high" stress drop adjustments for Germany and compares them
        against the original "target" GMPE for a variety of magnitudes
        and styles of fauling.
        """
        low_gsim, mid_gsim, high_gsim = adj_gmpe_set
        tot_std = [const.StdDev.TOTAL]
        for imt in self.imts:
            for mag in self.mags:
                for rake in self.rakes:
                    rctx = RuptureContext()
                    rctx.mag = mag
                    rctx.rake = rake
                    rctx.hypo_depth = 10.
                    rctx.width = 0.0001
                    # Get "original" values
                    mean = original_gmpe.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    mean = np.exp(mean)
                    # Get "low" adjustments (0.75 times the original)
                    low_mean = low_gsim.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(low_mean) / mean, 0.75 * np.ones_like(low_mean))

                    # Get "middle" adjustments (1.25 times the original)
                    mid_mean = mid_gsim.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(mid_mean) / mean, 1.25 * np.ones_like(mid_mean))

                    # Get "high" adjustments (1.5 times the original)
                    high_mean = high_gsim.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(high_mean) / mean,
                        1.5 * np.ones_like(high_mean))
コード例 #2
0
ファイル: test_openquake.py プロジェクト: vSahakian/grmpy
## This all works..... ##

ASK14 = AbrahamsonEtAl2014()

IMT = imt.PGA()
rctx = RuptureContext()
dctx = DistancesContext()
sctx = SitesContext()
sctx_rock = SitesContext()

rctx.rake = 0.0
rctx.dip = 90.0
rctx.ztor = 7.13
rctx.mag = 3.0
#rctx.mag = np.linspace(0.1,5.)
rctx.width = 10.0
rctx.hypo_depth = 8.0

#dctx.rrup = np.logspace(1,np.log10(200),100)
dctx.rrup = np.logspace(np.log10(10),np.log10(10.0),1)


# Assuming average ztor, get rjb:
dctx.rjb = np.sqrt(dctx.rrup**2 - rctx.ztor**2)
dctx.rhypo = dctx.rrup
dctx.rx = dctx.rjb
dctx.ry0 = dctx.rx

sctx.vs30 = np.ones_like(dctx.rrup) * 760.0
sctx.vs30measured = np.full_like(dctx.rrup, False, dtype='bool')
sctx.z1pt0 = np.ones_like(dctx.rrup) * 0.05
コード例 #3
0
def get_extent(rupture=None, config=None):
    """
    Method to compute map extent from rupture. There are numerous methods for
    getting the extent:
        - It can be specified directly in the config file,
        - it can be hard coded for specific magnitude ranges in the config
          file, or
        - it can be based on the MultiGMPE for the event.

    All methods except for the first requires a rupture object.

    If no config is provided then a rupture is required and the extent is based
    on a generic set of active/stable.

    Args:
        rupture (Rupture): A ShakeMap Rupture instance.
        config (ConfigObj): ShakeMap config object.

    Returns:
        tuple: lonmin, lonmax, latmin, latmax rounded to the nearest
        arc-minute..

    """

    # -------------------------------------------------------------------------
    # Check to see what parameters are specified in the extent config
    # -------------------------------------------------------------------------
    spans = {}
    bounds = []
    if config is not None:
        if 'extent' in config:
            if 'magnitude_spans' in config['extent']:
                if len(config['extent']['magnitude_spans']):
                    if isinstance(config['extent']['magnitude_spans'], dict):
                        spans = config['extent']['magnitude_spans']
            if 'bounds' in config['extent']:
                if 'extent' in config['extent']['bounds']:
                    if config['extent']['bounds']['extent'][0] != -999.0:
                        bounds = config['extent']['bounds']['extent']

    # -------------------------------------------------------------------------
    # Simplest option: extent was specified in the config, use that and exit.
    # -------------------------------------------------------------------------
    if len(bounds):
        xmin, ymin, xmax, ymax = bounds
        return (xmin, xmax, ymin, ymax)

    if not rupture or not isinstance(rupture, Rupture):
        raise TypeError('get_extent() requires a rupture object if the extent '
                        'is not specified in the config object.')

    # Find the central point
    origin = rupture.getOrigin()
    if isinstance(rupture, (QuadRupture, EdgeRupture)):
        # For an extended rupture, it is the midpoint between the extent of the
        # verticies
        lats = rupture.lats
        lons = rupture.lons

        # Remove nans
        lons = lons[~np.isnan(lons)]
        lats = lats[~np.isnan(lats)]

        clat = 0.5 * (np.nanmax(lats) + np.nanmin(lats))
        clon = 0.5 * (np.nanmax(lons) + np.nanmin(lons))
    else:
        # For a point source, it is just the epicenter
        clat = origin.lat
        clon = origin.lon

    mag = origin.mag

    # -------------------------------------------------------------------------
    # Second simplest option: spans are hardcoded based on magnitude
    # -------------------------------------------------------------------------
    if len(spans):
        xmin = None
        xmax = None
        ymin = None
        ymax = None
        for spankey, span in spans.items():
            if mag > span[0] and mag <= span[1]:
                ymin = clat - span[2] / 2
                ymax = clat + span[2] / 2
                xmin = clon - span[3] / 2
                xmax = clon + span[3] / 2
                break
        if xmin is not None:
            return (xmin, xmax, ymin, ymax)

    # -------------------------------------------------------------------------
    # Use MultiGMPE to get spans
    # -------------------------------------------------------------------------
    if config is not None:
        gmpe = MultiGMPE.from_config(config)
        gmice = get_object_from_config('gmice', 'modeling', config)
    else:
        # Put in some default values for conf
        config = {
            'extent': {
                'mmi': {
                    'threshold': 4.5,
                    'mindist': 100,
                    'maxdist': 1000
                }
            }
        }

        # Generic GMPEs choices based only on active vs stable
        # as defaults...
        stable = is_stable(origin.lon, origin.lat)
        if not stable:
            ASK14 = AbrahamsonEtAl2014()
            CB14 = CampbellBozorgnia2014()
            CY14 = ChiouYoungs2014()
            gmpes = [ASK14, CB14, CY14]
            site_gmpes = None
            weights = [1 / 3.0, 1 / 3.0, 1 / 3.0]
            gmice = WGRW12()
        else:
            Fea96 = FrankelEtAl1996MwNSHMP2008()
            Tea97 = ToroEtAl1997MwNSHMP2008()
            Sea02 = SilvaEtAl2002MwNSHMP2008()
            C03 = Campbell2003MwNSHMP2008()
            TP05 = TavakoliPezeshk2005MwNSHMP2008()
            AB06p = AtkinsonBoore2006Modified2011()
            Pea11 = PezeshkEtAl2011()
            Atk08p = Atkinson2008prime()
            Sea01 = SomervilleEtAl2001NSHMP2008()
            gmpes = [
                Fea96, Tea97, Sea02, C03, TP05, AB06p, Pea11, Atk08p, Sea01
            ]
            site_gmpes = [AB06p]
            weights = [0.16, 0.0, 0.0, 0.17, 0.17, 0.3, 0.2, 0.0, 0.0]
            gmice = AK07()

        gmpe = MultiGMPE.from_list(gmpes,
                                   weights,
                                   default_gmpes_for_site=site_gmpes)

    min_mmi = config['extent']['mmi']['threshold']
    default_imt = imt.SA(1.0)
    sd_types = [const.StdDev.TOTAL]

    # Distance context
    dx = DistancesContext()
    # This imposes minimum/ maximum distances of:
    #   80 and 800 km; could make this configurable
    d_min = config['extent']['mmi']['mindist']
    d_max = config['extent']['mmi']['maxdist']
    dx.rjb = np.logspace(np.log10(d_min), np.log10(d_max), 2000)
    # Details don't matter for this; assuming vertical surface rupturing fault
    # with epicenter at the surface.
    dx.rrup = dx.rjb
    dx.rhypo = dx.rjb
    dx.repi = dx.rjb
    dx.rx = np.zeros_like(dx.rjb)
    dx.ry0 = np.zeros_like(dx.rjb)
    dx.rvolc = np.zeros_like(dx.rjb)

    # Sites context
    sx = SitesContext()
    # Set to soft soil conditions
    sx.vs30 = np.full_like(dx.rjb, 180)
    sx = MultiGMPE.set_sites_depth_parameters(sx, gmpe)
    sx.vs30measured = np.full_like(sx.vs30, False, dtype=bool)
    sx = Sites._addDepthParameters(sx)
    sx.backarc = np.full_like(sx.vs30, False, dtype=bool)

    # Rupture context
    rx = RuptureContext()
    rx.mag = origin.mag
    rx.rake = 0.0
    # From WC94...
    rx.width = 10**(-0.76 + 0.27 * rx.mag)
    rx.dip = 90.0
    rx.ztor = origin.depth
    rx.hypo_depth = origin.depth

    gmpe_imt_mean, _ = gmpe.get_mean_and_stddevs(sx, rx, dx, default_imt,
                                                 sd_types)

    # Convert to MMI
    gmpe_to_mmi, _ = gmice.getMIfromGM(gmpe_imt_mean, default_imt)

    # Minimum distance that exceeds threshold MMI?
    dists_exceed_mmi = dx.rjb[gmpe_to_mmi > min_mmi]
    if len(dists_exceed_mmi):
        mindist_km = np.max(dists_exceed_mmi)
    else:
        mindist_km = d_min

    # Get a projection
    proj = OrthographicProjection(clon - 4, clon + 4, clat + 4, clat - 4)
    if isinstance(rupture, (QuadRupture, EdgeRupture)):
        ruptx, rupty = proj(lons, lats)
    else:
        ruptx, rupty = proj(clon, clat)

    xmin = np.nanmin(ruptx) - mindist_km
    ymin = np.nanmin(rupty) - mindist_km
    xmax = np.nanmax(ruptx) + mindist_km
    ymax = np.nanmax(rupty) + mindist_km

    # Put a limit on range of aspect ratio
    dx = xmax - xmin
    dy = ymax - ymin
    ar = dy / dx
    if ar > 1.2:
        # Inflate x
        dx_target = dy / 1.2
        ddx = dx_target - dx
        xmax = xmax + ddx / 2
        xmin = xmin - ddx / 2
    if ar < 0.83:
        # Inflate y
        dy_target = dx * 0.83
        ddy = dy_target - dy
        ymax = ymax + ddy / 2
        ymin = ymin - ddy / 2

    lonmin, latmin = proj(np.array([xmin]), np.array([ymin]), reverse=True)
    lonmax, latmax = proj(np.array([xmax]), np.array([ymax]), reverse=True)

    #
    # Round coordinates to the nearest minute -- that should make the
    # output grid register with common grid resolutions (60c, 30c,
    # 15c, 7.5c)
    #
    logging.debug("Extent: %f, %f, %f, %f" % (lonmin, lonmax, latmin, latmax))
    return _round_coord(lonmin[0]), _round_coord(lonmax[0]), \
        _round_coord(latmin[0]), _round_coord(latmax[0])
コード例 #4
0
def _get_extent_from_multigmpe(rupture, config=None):
    """
    Use MultiGMPE to determine extent
    """
    (clon, clat) = _rupture_center(rupture)
    origin = rupture.getOrigin()
    if config is not None:
        gmpe = MultiGMPE.from_config(config)
        gmice = get_object_from_config('gmice', 'modeling', config)
        if imt.SA in gmice.DEFINED_FOR_INTENSITY_MEASURE_TYPES:
            default_imt = imt.SA(1.0)
        elif imt.PGV in gmice.DEFINED_FOR_INTENSITY_MEASURE_TYPES:
            default_imt = imt.PGV()
        else:
            default_imt = imt.PGA()
    else:
        # Put in some default values for conf
        config = {
            'extent': {
                'mmi': {
                    'threshold': 4.5,
                    'mindist': 100,
                    'maxdist': 1000
                }
            }
        }

        # Generic GMPEs choices based only on active vs stable
        # as defaults...
        stable = is_stable(origin.lon, origin.lat)
        if not stable:
            ASK14 = AbrahamsonEtAl2014()
            CB14 = CampbellBozorgnia2014()
            CY14 = ChiouYoungs2014()
            gmpes = [ASK14, CB14, CY14]
            site_gmpes = None
            weights = [1/3.0, 1/3.0, 1/3.0]
            gmice = WGRW12()
        else:
            Fea96 = FrankelEtAl1996MwNSHMP2008()
            Tea97 = ToroEtAl1997MwNSHMP2008()
            Sea02 = SilvaEtAl2002MwNSHMP2008()
            C03 = Campbell2003MwNSHMP2008()
            TP05 = TavakoliPezeshk2005MwNSHMP2008()
            AB06p = AtkinsonBoore2006Modified2011()
            Pea11 = PezeshkEtAl2011()
            Atk08p = Atkinson2008prime()
            Sea01 = SomervilleEtAl2001NSHMP2008()
            gmpes = [Fea96, Tea97, Sea02, C03,
                     TP05, AB06p, Pea11, Atk08p, Sea01]
            site_gmpes = [AB06p]
            weights = [0.16, 0.0, 0.0, 0.17, 0.17, 0.3, 0.2, 0.0, 0.0]
            gmice = AK07()

        gmpe = MultiGMPE.from_list(
            gmpes, weights, default_gmpes_for_site=site_gmpes)
        default_imt = imt.SA(1.0)

    min_mmi = config['extent']['mmi']['threshold']
    sd_types = [const.StdDev.TOTAL]

    # Distance context
    dx = DistancesContext()
    # This imposes minimum/ maximum distances of:
    #   80 and 800 km; could make this configurable
    d_min = config['extent']['mmi']['mindist']
    d_max = config['extent']['mmi']['maxdist']
    dx.rjb = np.logspace(np.log10(d_min), np.log10(d_max), 2000)
    # Details don't matter for this; assuming vertical surface rupturing fault
    # with epicenter at the surface.
    dx.rrup = dx.rjb
    dx.rhypo = dx.rjb
    dx.repi = dx.rjb
    dx.rx = np.zeros_like(dx.rjb)
    dx.ry0 = np.zeros_like(dx.rjb)
    dx.rvolc = np.zeros_like(dx.rjb)

    # Sites context
    sx = SitesContext()
    # Set to soft soil conditions
    sx.vs30 = np.full_like(dx.rjb, 180)
    sx = MultiGMPE.set_sites_depth_parameters(sx, gmpe)
    sx.vs30measured = np.full_like(sx.vs30, False, dtype=bool)
    sx = Sites._addDepthParameters(sx)
    sx.backarc = np.full_like(sx.vs30, False, dtype=bool)

    # Rupture context
    rx = RuptureContext()
    rx.mag = origin.mag
    rx.rake = 0.0
    # From WC94...
    rx.width = 10**(-0.76 + 0.27*rx.mag)
    rx.dip = 90.0
    rx.ztor = origin.depth
    rx.hypo_depth = origin.depth

    gmpe_imt_mean, _ = gmpe.get_mean_and_stddevs(
        sx, rx, dx, default_imt, sd_types)

    # Convert to MMI
    gmpe_to_mmi, _ = gmice.getMIfromGM(gmpe_imt_mean, default_imt)

    # Minimum distance that exceeds threshold MMI?
    dists_exceed_mmi = dx.rjb[gmpe_to_mmi > min_mmi]
    if len(dists_exceed_mmi):
        mindist_km = np.max(dists_exceed_mmi)
    else:
        mindist_km = d_min

    # Get a projection
    proj = OrthographicProjection(clon - 4, clon + 4, clat + 4, clat - 4)
    if isinstance(rupture, (QuadRupture, EdgeRupture)):
        ruptx, rupty = proj(
            rupture.lons[~np.isnan(rupture.lons)],
            rupture.lats[~np.isnan(rupture.lats)]
        )
    else:
        ruptx, rupty = proj(clon, clat)

    xmin = np.nanmin(ruptx) - mindist_km
    ymin = np.nanmin(rupty) - mindist_km
    xmax = np.nanmax(ruptx) + mindist_km
    ymax = np.nanmax(rupty) + mindist_km

    # Put a limit on range of aspect ratio
    dx = xmax - xmin
    dy = ymax - ymin
    ar = dy / dx
    if ar > 1.2:
        # Inflate x
        dx_target = dy / 1.2
        ddx = dx_target - dx
        xmax = xmax + ddx / 2
        xmin = xmin - ddx / 2
    if ar < 0.83:
        # Inflate y
        dy_target = dx * 0.83
        ddy = dy_target - dy
        ymax = ymax + ddy / 2
        ymin = ymin - ddy / 2

    lonmin, latmin = proj(np.array([xmin]), np.array([ymin]), reverse=True)
    lonmax, latmax = proj(np.array([xmax]), np.array([ymax]), reverse=True)

    #
    # Round coordinates to the nearest minute -- that should make the
    # output grid register with common grid resolutions (60c, 30c,
    # 15c, 7.5c)
    #
    logging.debug("Extent: %f, %f, %f, %f" %
                  (lonmin, lonmax, latmin, latmax))
    return _round_coord(lonmin[0]), _round_coord(lonmax[0]), \
        _round_coord(latmin[0]), _round_coord(latmax[0])
コード例 #5
0
        # need a dummy origin
        origin = Origin({
            'id': '',
            'netid': '',
            'network': '',
            'lat': 0,
            'lon': 0,
            'depth': 0,
            'locstring': '',
            'mag': 0,
            'time': ''
        })

        rupt = get_rupture(origin, filepath, new_format=False)

        rx.width = rupt.getWidth()
        rx.ztor = rupt.getDepthToTop()

    # If there is no fault file, use hypocentral dist for rrup.
    else:
        rx.width = 10**(-0.76 + 0.27 * rx.mag)
        rx.ztor = rx.hypo_depth

    # Evaluate the GMPE.
    for i in range(len(imts)):
        gmpe_imt_mean, gmpe_imt_sd = gmpe.get_mean_and_stddevs(
            sx, rx, dx, imts[i], sd_types)
        spectrals[i].append(gmpe_imt_mean)
        stds[i].append(gmpe_imt_sd)

# Flatten lists  .
コード例 #6
0
def test_scr_rlme():
    old_gmpe = set_gmpe('stable_continental_nshmp2014_rlme')
    spec_file = pkg_resources.resource_filename(
        'scenarios', os.path.join('data', 'configspec.conf'))
    validator = get_custom_validator()
    config = ConfigObj(os.path.join(os.path.expanduser('~'), 'scenarios.conf'),
                       configspec=spec_file)
    tmp = pkg_resources.resource_filename(
        'scenarios', os.path.join('..', 'data', 'gmpe_sets.conf'))
    config.merge(ConfigObj(tmp, configspec=spec_file))
    tmp = pkg_resources.resource_filename(
        'scenarios', os.path.join('..', 'data', 'modules.conf'))
    config.merge(ConfigObj(tmp, configspec=spec_file))
    results = config.validate(validator)
    if results != True:
        config_error(config, results)

    # MultiGMPE from config
    config = config.dict()
    gmpe = MultiGMPE.from_config(config)

    # Input stuff
    IMT = imt.SA(1.0)
    rctx = RuptureContext()
    dctx = DistancesContext()
    sctx = SitesContext()

    rctx.rake = 0.0
    rctx.dip = 90.0
    rctx.ztor = 0.0
    rctx.mag = 8.0
    rctx.width = 10.0
    rctx.hypo_depth = 8.0

    dctx.rjb = np.logspace(1, np.log10(800), 100)
    dctx.rrup = dctx.rjb
    dctx.rhypo = dctx.rjb
    dctx.rx = dctx.rjb
    dctx.ry0 = dctx.rjb

    sctx.vs30 = np.ones_like(dctx.rjb) * 275.0
    sctx.vs30measured = np.full_like(dctx.rjb, False, dtype='bool')
    sctx = MultiGMPE.set_sites_depth_parameters(sctx, gmpe)

    # Evaluate
    conf_lmean, dummy = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, IMT,
                                                  [const.StdDev.TOTAL])

    target_lmean = np.array([
        0.10556736, 0.0839267, 0.06189444, 0.03945984, 0.01661264, -0.006657,
        -0.03035844, -0.05450058, -0.07909179, -0.10413995, -0.1296524,
        -0.15563655, -0.1821091, -0.20909381, -0.23661405, -0.26469259,
        -0.29335086, -0.32257956, -0.35232905, -0.38254639, -0.41317807,
        -0.44417017, -0.47549552, -0.5071888, -0.53929293, -0.57185042,
        -0.60490345, -0.63848027, -0.67255251, -0.70707712, -0.74201096,
        -0.77731091, -0.81293906, -0.84889737, -0.88520644, -0.92188724,
        -0.95899471, -0.99699613, -1.03583184, -1.07530664, -1.11531737,
        -1.15576129, -1.19653696, -1.23757689, -1.2772327, -1.2915098,
        -1.30576498, -1.32001713, -1.33429606, -1.3486727, -1.36322545,
        -1.37803346, -1.39317668, -1.40677752, -1.42081409, -1.43538898,
        -1.45056417, -1.46640223, -1.48327111, -1.50656497, -1.53368548,
        -1.56645985, -1.59991327, -1.63399401, -1.66867278, -1.7039438,
        -1.73980246, -1.77624473, -1.81326727, -1.85087166, -1.889066,
        -1.92784814, -1.96721442, -2.0071855, -2.04779304, -2.08909259,
        -2.13114448, -2.17401045, -2.21775376, -2.26243406, -2.30808979,
        -2.35475487, -2.40246494, -2.4512575, -2.50117075, -2.55223495,
        -2.60447754, -2.65792811, -2.71261851, -2.61732716, -2.67007323,
        -2.72399057, -2.77918054, -2.83574666, -2.89379416, -2.95340501,
        -3.01462691, -3.07750731, -3.14209631, -3.20844679
    ])

    np.testing.assert_allclose(conf_lmean, target_lmean, atol=1e-6)

    # Redo for 3 sec so some GMPEs are filtered out
    IMT = imt.SA(3.0)
    gmpe = MultiGMPE.from_config(config, filter_imt=IMT)
    conf_lmean, dummy = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, IMT,
                                                  [const.StdDev.TOTAL])

    target_lmean = np.array([
        -1.26636973, -1.289514, -1.31300386, -1.33683936, -1.36102084,
        -1.38554902, -1.41042497, -1.43565015, -1.46122642, -1.48715602,
        -1.51344154, -1.54008586, -1.56709215, -1.59446375, -1.62220409,
        -1.65031664, -1.6788048, -1.70767178, -1.7369205, -1.76655351,
        -1.79657287, -1.82698005, -1.85777587, -1.88896039, -1.92053288,
        -1.95249175, -1.98483453, -2.01755788, -2.05065755, -2.08412844,
        -2.11796463, -2.15215943, -2.18670547, -2.22159473, -2.25681869,
        -2.29236835, -2.32823441, -2.36453464, -2.40140834, -2.43883442,
        -2.47679132, -2.51525752, -2.55421156, -2.59363211, -2.63112832,
        -2.63336521, -2.63582817, -2.6385319, -2.64147962, -2.64466761,
        -2.64809268, -2.65175214, -2.6556438, -2.65976592, -2.66411721,
        -2.66869673, -2.67350386, -2.67853821, -2.68413311, -2.69604497,
        -2.7124745, -2.73590549, -2.75964098, -2.78367044, -2.80798539,
        -2.8325853, -2.85746998, -2.88263948, -2.90809408, -2.93383429,
        -2.95986073, -2.98617306, -3.01275705, -3.03961495, -3.06675608,
        -3.09419043, -3.12192861, -3.14998191, -3.17836228, -3.20708239,
        -3.23615561, -3.26559604, -3.29541858, -3.32563888, -3.35627343,
        -3.38733956, -3.41885548, -3.4508403, -3.48331409, -3.56476842,
        -3.59987076, -3.63573296, -3.67238872, -3.70987332, -3.74822369,
        -3.78747847, -3.82767809, -3.86886488, -3.91108308, -3.95437899
    ])

    np.testing.assert_allclose(conf_lmean, target_lmean, atol=1e-6)

    # Clean up
    set_gmpe(old_gmpe)