def test_array_conversion(self): """ Tests the simple array conversion """ # Setup two expected_dset1 = np.zeros([3, 3]) expected_dset2 = np.ones([3, 3]) output_dict = hdf_arrays_to_dict(self.group) assert isinstance(output_dict, dict) self.assertIn("DSET1", output_dict) self.assertIn("DSET2", output_dict) np.testing.assert_array_almost_equal(output_dict["DSET1"], expected_dset1) np.testing.assert_array_almost_equal(output_dict["DSET2"], expected_dset2)
def init(self, fle): """ Executes the preprocessing steps at the instantiation stage to read in the tables from hdf5 and hold them in memory. """ self.distance_type = fle["Distances"].attrs["metric"] self.REQUIRES_DISTANCES = set([self.distance_type]) # Load in magnitude self.m_w = fle["Mw"][:] # Load in distances self.distances = fle["Distances"][:] # Load intensity measure types and levels self.imls = hdf_arrays_to_dict(fle["IMLs"]) self.DEFINED_FOR_INTENSITY_MEASURE_TYPES = set(self._supported_imts()) if "SA" in self.imls.keys() and "T" not in self.imls: raise ValueError("Spectral Acceleration must be accompanied by " "periods") # Get the standard deviations if "Amplification" in fle: self._setup_amplification(fle)