コード例 #1
0
ファイル: test_selector.py プロジェクト: yasser64b/oq-engine
    def test_select_within_depth_range(self):
        # Tests the function to select within the depth range

        # Setup function
        self.catalogue = Catalogue()
        self.catalogue.data['depth'] = np.array([5., 15., 25., 35., 45.])

        selector0 = CatalogueSelector(self.catalogue)
        # Test case 1: No limits specified - all catalogue valid
        test_cat_1 = selector0.within_depth_range()
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             self.catalogue.data['depth'])

        # Test case 2: Lower depth limit specfied only
        test_cat_1 = selector0.within_depth_range(lower_depth=30.)
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             np.array([5., 15., 25.]))
        # Test case 3: Upper depth limit specified only
        test_cat_1 = selector0.within_depth_range(upper_depth=20.)
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             np.array([25., 35., 45.]))

        # Test case 4: Both depth limits specified
        test_cat_1 = selector0.within_depth_range(upper_depth=20.,
                                                  lower_depth=40.)
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             np.array([25., 35.]))
コード例 #2
0
    def setUp(self):
        """
        """
        # Read initial dataset
        filename = os.path.join(self.BASE_DATA_PATH,
                                'completeness_test_cat.csv')
        test_data = np.genfromtxt(filename, delimiter=',', skip_header=1)
        # Create the catalogue A
        self.catalogueA = Catalogue.make_from_dict(
            {'year': test_data[:, 3], 'magnitude': test_data[:, 17]})

        # Read initial dataset
        filename = os.path.join(self.BASE_DATA_PATH,
                                'recurrence_test_cat_B.csv')
        test_data = np.genfromtxt(filename, delimiter=',', skip_header=1)
        # Create the catalogue A
        self.catalogueB = Catalogue.make_from_dict(
            {'year': test_data[:, 3], 'magnitude': test_data[:, 17]})

        # Read the verification table A
        filename = os.path.join(self.BASE_DATA_PATH,
                                'recurrence_table_test_A.csv')
        self.true_tableA = np.genfromtxt(filename, delimiter=',')

        # Read the verification table A
        filename = os.path.join(self.BASE_DATA_PATH,
                                'recurrence_table_test_B.csv')
        self.true_tableB = np.genfromtxt(filename, delimiter=',')
コード例 #3
0
ファイル: test_fault_model.py プロジェクト: gem/oq-hazardlib
    def test_select_catalogue_rrup(self):
        """
        Tests catalogue selection with Joyner-Boore distance
        """
        self.fault = mtkActiveFault(
            '001',
            'A Fault',
            self.simple_fault,
            [(5., 0.5), (7., 0.5)],
            0.,
            None,
            msr_sigma=[(-1.5, 0.15), (0., 0.7), (1.5, 0.15)])

        cat1 = Catalogue()
        cat1.data = {"eventID": ["001", "002", "003", "004"],
                     "longitude": np.array([30.1, 30.1, 30.5, 31.5]),
                     "latitude": np.array([30.0, 30.25, 30.4, 30.5]),
                     "depth": np.array([5.0, 250.0, 10.0, 10.0])}
        selector = CatalogueSelector(cat1)
        # Select within 50 km of the fault
        self.fault.select_catalogue(selector, 50.0,
                                    distance_metric="rupture")
        np.testing.assert_array_almost_equal(
            self.fault.catalogue.data["longitude"],
            np.array([30.1, 30.5]))
        np.testing.assert_array_almost_equal(
            self.fault.catalogue.data["latitude"],
            np.array([30.0, 30.4]))
        np.testing.assert_array_almost_equal(
            self.fault.catalogue.data["depth"],
            np.array([5.0, 10.0]))
コード例 #4
0
class TestMagnitudeTimeDistribution(unittest.TestCase):
    """
    Simple class to test the magnitude time density distribution
    """
    def setUp(self):
        self.catalogue = Catalogue()
        x, y = np.meshgrid(np.arange(1915., 2010., 10.),
                           np.arange(5.5, 9.0, 1.0))
        nx, ny = np.shape(x)
        self.catalogue.data['magnitude'] = (y.reshape([nx * ny, 1])).flatten()
        x = (x.reshape([nx * ny, 1])).flatten()
        self.catalogue.data['year'] = x.astype(int)
        self.catalogue.data['month'] = np.ones_like(x, dtype=int)
        self.catalogue.data['day'] = np.ones_like(x, dtype=int)
        self.catalogue.data['hour'] = np.ones_like(x, dtype=int)
        self.catalogue.data['minute'] = np.ones_like(x, dtype=int)
        self.catalogue.data['second'] = np.ones_like(x, dtype=float)

    def test_magnitude_time_distribution_no_uncertainties(self):
        # Tests the magnitude-depth distribution without uncertainties
        mag_range = np.arange(5., 10., 1.)
        time_range = np.arange(1910., 2020., 10.)
        # Without normalisation
        expected_array = np.ones(
            [len(time_range) - 1, len(mag_range) - 1], dtype=float)
        np.testing.assert_array_almost_equal(
            expected_array,
            self.catalogue.get_magnitude_time_distribution(
                mag_range, time_range))
        # With Normalisation
        np.testing.assert_array_almost_equal(
            expected_array / np.sum(expected_array),
            self.catalogue.get_magnitude_time_distribution(mag_range,
                                                           time_range,
                                                           normalisation=True))
コード例 #5
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
    def setUp(self):
        """
        """
        # Read initial dataset
        filename = os.path.join(self.BASE_DATA_PATH,
                                'completeness_test_cat.csv')
        test_data = np.genfromtxt(filename, delimiter=',', skip_header=1)
        # Create the catalogue A
        self.catalogueA = Catalogue.make_from_dict(
            {'year': test_data[:,3], 'magnitude': test_data[:,17]})

        # Read initial dataset
        filename = os.path.join(self.BASE_DATA_PATH,
                                'recurrence_test_cat_B.csv')
        test_data = np.genfromtxt(filename, delimiter=',', skip_header=1)
        # Create the catalogue A
        self.catalogueB = Catalogue.make_from_dict(
            {'year': test_data[:,3], 'magnitude': test_data[:,17]})

        # Read the verification table A
        filename = os.path.join(self.BASE_DATA_PATH,
                                'recurrence_table_test_A.csv')
        self.true_tableA = np.genfromtxt(filename, delimiter = ',')

        # Read the verification table A
        filename = os.path.join(self.BASE_DATA_PATH,
                                'recurrence_table_test_B.csv')
        self.true_tableB = np.genfromtxt(filename, delimiter = ',')
コード例 #6
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
class TestMagnitudeTimeDistribution(unittest.TestCase):
    """
    Simple class to test the magnitude time density distribution
    """
    def setUp(self):
        self.catalogue = Catalogue()
        x, y = np.meshgrid(np.arange(1915., 2010., 10.),
                           np.arange(5.5, 9.0, 1.0))
        nx, ny = np.shape(x)
        self.catalogue.data['magnitude'] = (y.reshape([nx * ny, 1])).flatten()
        x = (x.reshape([nx * ny, 1])).flatten()
        self.catalogue.data['year'] = x.astype(int)
        self.catalogue.data['month'] = np.ones_like(x, dtype=int)
        self.catalogue.data['day'] = np.ones_like(x, dtype=int)
        self.catalogue.data['hour'] = np.ones_like(x, dtype=int)
        self.catalogue.data['minute'] = np.ones_like(x, dtype=int)
        self.catalogue.data['second'] = np.ones_like(x, dtype=float)

    def test_magnitude_time_distribution_no_uncertainties(self):
        # Tests the magnitude-depth distribution without uncertainties
        mag_range = np.arange(5., 10., 1.)
        time_range = np.arange(1910., 2020., 10.)
        # Without normalisation
        expected_array = np.ones([len(time_range) - 1, len(mag_range) - 1],
                                 dtype=float)
        np.testing.assert_array_almost_equal(
            expected_array,
            self.catalogue.get_magnitude_time_distribution(
                mag_range, time_range))
        # With Normalisation
        np.testing.assert_array_almost_equal(
            expected_array / np.sum(expected_array),
            self.catalogue.get_magnitude_time_distribution(
                mag_range, time_range, normalisation=True))
コード例 #7
0
ファイル: test_selector.py プロジェクト: yasser64b/oq-engine
    def test_select_within_magnitude_range(self):
        '''
        Tests the function to select within the magnitude range
        '''
        # Setup function
        self.catalogue = Catalogue()
        self.catalogue.data['magnitude'] = np.array([4., 5., 6., 7., 8.])

        selector0 = CatalogueSelector(self.catalogue)
        # Test case 1: No limits specified - all catalogue valid
        test_cat_1 = selector0.within_magnitude_range()
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             self.catalogue.data['magnitude'])

        # Test case 2: Lower depth limit specfied only
        test_cat_1 = selector0.within_magnitude_range(lower_mag=5.5)
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             np.array([6., 7., 8.]))
        # Test case 3: Upper depth limit specified only
        test_cat_1 = selector0.within_magnitude_range(upper_mag=5.5)
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             np.array([4., 5.]))

        # Test case 4: Both depth limits specified
        test_cat_1 = selector0.within_magnitude_range(upper_mag=7.5,
                                                      lower_mag=5.5)
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             np.array([6., 7.]))
コード例 #8
0
    def select_catalogue(self, valid_id):
        '''
        Method to post-process the catalogue based on the selection options

        :param numpy.ndarray valid_id:
            Boolean vector indicating whether each event is selected (True)
            or not (False)

        :returns:
            Catalogue of selected events as instance of
            openquake.hmtk.seismicity.catalogue.Catalogue class
        '''
        if not np.any(valid_id):
            # No events selected - create clean instance of class
            output = Catalogue()
            output.processes = self.catalogue.processes

        elif np.all(valid_id):
            if self.copycat:
                output = deepcopy(self.catalogue)
            else:
                output = self.catalogue
        else:
            if self.copycat:
                output = deepcopy(self.catalogue)
            else:
                output = self.catalogue
            output.purge_catalogue(valid_id)
        return output
コード例 #9
0
    def test_select_catalogue_rrup(self):
        """
        Tests catalogue selection with Joyner-Boore distance
        """
        self.fault = mtkActiveFault('001',
                                    'A Fault',
                                    self.simple_fault, [(5., 0.5), (7., 0.5)],
                                    0.,
                                    None,
                                    msr_sigma=[(-1.5, 0.15), (0., 0.7),
                                               (1.5, 0.15)])

        cat1 = Catalogue()
        cat1.data = {
            "eventID": ["001", "002", "003", "004"],
            "longitude": np.array([30.1, 30.1, 30.5, 31.5]),
            "latitude": np.array([30.0, 30.25, 30.4, 30.5]),
            "depth": np.array([5.0, 250.0, 10.0, 10.0])
        }
        selector = CatalogueSelector(cat1)
        # Select within 50 km of the fault
        self.fault.select_catalogue(selector, 50.0, distance_metric="rupture")
        np.testing.assert_array_almost_equal(
            self.fault.catalogue.data["longitude"], np.array([30.1, 30.5]))
        np.testing.assert_array_almost_equal(
            self.fault.catalogue.data["latitude"], np.array([30.0, 30.4]))
        np.testing.assert_array_almost_equal(
            self.fault.catalogue.data["depth"], np.array([5.0, 10.0]))
コード例 #10
0
ファイル: selector.py プロジェクト: digitalsatori/oq-engine
    def select_catalogue(self, valid_id):
        '''
        Method to post-process the catalogue based on the selection options

        :param numpy.ndarray valid_id:
            Boolean vector indicating whether each event is selected (True)
            or not (False)

        :returns:
            Catalogue of selected events as instance of
            openquake.hmtk.seismicity.catalogue.Catalogue class
        '''
        if not np.any(valid_id):
            # No events selected - create clean instance of class
            output = Catalogue()
            output.processes = self.catalogue.processes

        elif np.all(valid_id):
            if self.copycat:
                output = deepcopy(self.catalogue)
            else:
                output = self.catalogue
        else:
            if self.copycat:
                output = deepcopy(self.catalogue)
            else:
                output = self.catalogue
            output.purge_catalogue(valid_id)
        return output
コード例 #11
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def test_load_from_array(self):
     # Tests the creation of a catalogue from an array and a key list
     cat = Catalogue()
     cat.load_from_array(['year', 'magnitude'], self.data_array)
     np.testing.assert_allclose(cat.data['magnitude'],
                                self.data_array[:, 1])
     np.testing.assert_allclose(cat.data['year'],
                                self.data_array[:, 0].astype(int))
コード例 #12
0
 def test_load_from_array(self):
     # Tests the creation of a catalogue from an array and a key list
     cat = Catalogue()
     cat.load_from_array(['year', 'magnitude'], self.data_array)
     np.testing.assert_allclose(cat.data['magnitude'], self.data_array[:,
                                                                       1])
     np.testing.assert_allclose(cat.data['year'],
                                self.data_array[:, 0].astype(int))
コード例 #13
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def test_hypocentres_as_mesh(self):
     # Tests the function to render the hypocentres to a
     # hazardlib.geo.mesh.Mesh object.
     cat = Catalogue()
     cat.data['longitude'] = np.array([2., 3.])
     cat.data['latitude'] = np.array([2., 3.])
     cat.data['depth'] = np.array([2., 3.])
     self.assertTrue(isinstance(cat.hypocentres_as_mesh(), Mesh))
コード例 #14
0
    def test_select_within_fault_distance(self):
        # Tests the selection of events within a distance from the fault
        # Set up catalouge
        self.catalogue = Catalogue()
        self.catalogue.data['longitude'] = np.arange(0., 5.5, 0.5)
        self.catalogue.data['latitude'] = np.arange(0., 5.5, 0.5)
        self.catalogue.data['depth'] = np.zeros(11, dtype=float)
        self.catalogue.data['eventID'] = np.arange(0, 11, 1)
        self.fault_source = mtkSimpleFaultSource('101', 'A simple fault')
        trace_as_line = line.Line([point.Point(2.0, 3.0),
                                   point.Point(3.0, 2.0)])
        self.fault_source.create_geometry(trace_as_line, 30., 0., 30.)
        selector0 = CatalogueSelector(self.catalogue)

        # Test 1 - simple case Joyner-Boore distance
        self.fault_source.select_catalogue(selector0, 40.)
        np.testing.assert_array_almost_equal(
            np.array([2., 2.5]),
            self.fault_source.catalogue.data['longitude'])
        np.testing.assert_array_almost_equal(
            np.array([2., 2.5]),
            self.fault_source.catalogue.data['latitude'])

        # Test 2 - simple case Rupture distance
        self.fault_source.catalogue = None
        self.fault_source.select_catalogue(selector0, 40., 'rupture')
        np.testing.assert_array_almost_equal(
            np.array([2.5]),
            self.fault_source.catalogue.data['longitude'])
        np.testing.assert_array_almost_equal(
            np.array([2.5]),
            self.fault_source.catalogue.data['latitude'])

        # Test 3 - for vertical fault ensure that Joyner-Boore distance
        # behaviour is the same as for rupture distance
        fault1 = mtkSimpleFaultSource('102', 'A vertical fault')
        fault1.create_geometry(trace_as_line, 90., 0., 30.)
        self.fault_source.create_geometry(trace_as_line, 90., 0., 30.)

        # Joyner-Boore
        self.fault_source.select_catalogue(selector0, 40.)
        # Rupture
        fault1.select_catalogue(selector0, 40., 'rupture')
        np.testing.assert_array_almost_equal(
            self.fault_source.catalogue.data['longitude'],
            fault1.catalogue.data['longitude'])
        np.testing.assert_array_almost_equal(
            self.fault_source.catalogue.data['latitude'],
            fault1.catalogue.data['latitude'])

        # The usual test to ensure error is raised when no events in catalogue
        self.catalogue = Catalogue()
        selector0 = CatalogueSelector(self.catalogue)
        with self.assertRaises(ValueError) as ver:
            self.fault_source.select_catalogue(selector0, 40.0)
        self.assertEqual(str(ver.exception),
                         'No events found in catalogue!')
コード例 #15
0
def from_df(df, end_year=None):
    cat = Catalogue()
    for column in df:
        if (column in Catalogue.FLOAT_ATTRIBUTE_LIST
                or column in Catalogue.INT_ATTRIBUTE_LIST):
            cat.data[column] = df[column].to_numpy()
        else:
            cat.data[column] = df[column]
    cat.end_year = np.max(df.year) if end_year is None else end_year
    return cat
コード例 #16
0
    def test_select_catalogue(self):
        # Tests the select_catalogue function - essentially a wrapper to the
        # two selection functions
        self.point_source = mtkPointSource('101', 'A Point Source')
        simple_point = Point(4.5, 4.5)
        self.point_source.create_geometry(simple_point, 0., 30.)

        # Bad case - no events in catalogue
        self.catalogue = Catalogue()
        selector0 = CatalogueSelector(self.catalogue)

        with self.assertRaises(ValueError) as ver:
            self.point_source.select_catalogue(selector0, 100.)
            self.assertEqual(str(ver.exception),
                             'No events found in catalogue!')

        # Create a catalogue
        self.catalogue = Catalogue()
        self.catalogue.data['eventID'] = np.arange(0, 7, 1)
        self.catalogue.data['longitude'] = np.arange(4.0, 7.5, 0.5)
        self.catalogue.data['latitude'] = np.arange(4.0, 7.5, 0.5)
        self.catalogue.data['depth'] = np.ones(7, dtype=float)
        selector0 = CatalogueSelector(self.catalogue)

        # To ensure that square function is called - compare against direct
        # instance
        # First implementation - compare select within distance
        self.point_source.select_catalogue_within_distance(selector0,
                                                           100.,
                                                           'epicentral')
        expected_catalogue = deepcopy(self.point_source.catalogue)
        self.point_source.catalogue = None  # Reset catalogue
        self.point_source.select_catalogue(selector0, 100., 'circle')
        np.testing.assert_array_equal(
            self.point_source.catalogue.data['eventID'],
            expected_catalogue.data['eventID'])

        # Second implementation  - compare select within cell
        expected_catalogue = None
        self.point_source.select_catalogue_within_cell(selector0, 150.)
        expected_catalogue = deepcopy(self.point_source.catalogue)
        self.point_source.catalogue = None  # Reset catalogue
        self.point_source.select_catalogue(selector0, 150., 'square')
        np.testing.assert_array_equal(
            self.point_source.catalogue.data['eventID'],
            expected_catalogue.data['eventID'])

        # Finally ensure error is raised when input is neither
        # 'circle' nor 'square'
        with self.assertRaises(ValueError) as ver:
            self.point_source.select_catalogue(selector0, 100., 'bad input')
        self.assertEqual(str(ver.exception),
                         'Unrecognised selection type for point source!')
コード例 #17
0
 def test_get_bounding_box(self):
     """
     Tests the method to return the bounding box of a catalogue
     """
     cat1 = Catalogue()
     cat1.data["longitude"] = np.array([10.0, 20.0])
     cat1.data["latitude"] = np.array([40.0, 50.0])
     bbox = cat1.get_bounding_box()
     self.assertAlmostEqual(bbox[0], 10.0)
     self.assertAlmostEqual(bbox[1], 20.0)
     self.assertAlmostEqual(bbox[2], 40.0)
     self.assertAlmostEqual(bbox[3], 50.0)
コード例 #18
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def test_get_bounding_box(self):
     """
     Tests the method to return the bounding box of a catalogue
     """
     cat1 = Catalogue()
     cat1.data["longitude"] = np.array([10.0, 20.0])
     cat1.data["latitude"] = np.array([40.0, 50.0])
     bbox = cat1.get_bounding_box()
     self.assertAlmostEqual(bbox[0], 10.0)
     self.assertAlmostEqual(bbox[1], 20.0)
     self.assertAlmostEqual(bbox[2], 40.0)
     self.assertAlmostEqual(bbox[3], 50.0)
コード例 #19
0
 def setUp(self):
     self.catalogue = Catalogue()
     x, y = np.meshgrid(np.arange(1915., 2010., 10.),
                        np.arange(5.5, 9.0, 1.0))
     nx, ny = np.shape(x)
     self.catalogue.data['magnitude'] = (y.reshape([nx * ny, 1])).flatten()
     x = (x.reshape([nx * ny, 1])).flatten()
     self.catalogue.data['year'] = x.astype(int)
     self.catalogue.data['month'] = np.ones_like(x, dtype=int)
     self.catalogue.data['day'] = np.ones_like(x, dtype=int)
     self.catalogue.data['hour'] = np.ones_like(x, dtype=int)
     self.catalogue.data['minute'] = np.ones_like(x, dtype=int)
     self.catalogue.data['second'] = np.ones_like(x, dtype=float)
コード例 #20
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def test_hypocentres_to_cartesian(self):
     # Tests the function to render the hypocentres to a cartesian array.
     # The invoked function nhlib.geo.utils.spherical_to_cartesian is
     # tested as part of the nhlib suite. The test here is included for
     # coverage
     cat = Catalogue()
     cat.data['longitude'] = np.array([2., 3.])
     cat.data['latitude'] = np.array([2., 3.])
     cat.data['depth'] = np.array([2., 3.])
     expected_data = spherical_to_cartesian(cat.data['longitude'],
                                            cat.data['latitude'],
                                            cat.data['depth'])
     model_output = cat.hypocentres_to_cartesian()
     np.testing.assert_array_almost_equal(expected_data, model_output)
コード例 #21
0
def from_df(df, end_year=None):
    """
    :param df:
        A :class:`pd.DataFrame` instance with the catalogue
    """
    cat = Catalogue()
    for column in df:
        if (column in Catalogue.FLOAT_ATTRIBUTE_LIST
                or column in Catalogue.INT_ATTRIBUTE_LIST):
            cat.data[column] = df[column].to_numpy()
        else:
            cat.data[column] = df[column]
    cat.end_year = np.max(df.year) if end_year is None else end_year
    return cat
コード例 #22
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
    def setUp(self):
        cat1 = Catalogue()
        cat1.end_year = 2000
        cat1.start_year = 1900
        cat1.data['eventID'] = [1.0, 2.0, 3.0]
        cat1.data['magnitude'] = np.array([1.0, 2.0, 3.0])

        cat2 = Catalogue()
        cat2.end_year = 1990
        cat2.start_year = 1910
        cat2.data['eventID'] = [1.0, 2.0, 3.0]
        cat2.data['magnitude'] = np.array([1.0, 2.0, 3.0])

        self.cat1 = cat1
        self.cat2 = cat2
コード例 #23
0
 def test_input_checks_sets_magnitude_interval(self):
     fake_completeness_table = 0.0
     catalogue = Catalogue.make_from_dict({'year': [1900]})
     config = {'magnitude_interval': 0.1}
     cmag, ctime, ref_mag, dmag, _ = rec_utils.input_checks(catalogue,
                                                            config, fake_completeness_table)
     self.assertEqual(0.1, dmag)
コード例 #24
0
ファイル: test_selector.py プロジェクト: gem/oq-hazardlib
    def test_select_within_magnitude_range(self):
        '''
        Tests the function to select within the magnitude range
        '''
        # Setup function
        self.catalogue = Catalogue()
        self.catalogue.data['magnitude'] = np.array([4., 5., 6., 7., 8.])

        selector0 = CatalogueSelector(self.catalogue)
        # Test case 1: No limits specified - all catalogue valid
        test_cat_1 = selector0.within_magnitude_range()
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             self.catalogue.data['magnitude'])

        # Test case 2: Lower depth limit specfied only
        test_cat_1 = selector0.within_magnitude_range(lower_mag=5.5)
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             np.array([6., 7., 8.]))
        # Test case 3: Upper depth limit specified only
        test_cat_1 = selector0.within_magnitude_range(upper_mag=5.5)
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             np.array([4., 5.]))

        # Test case 4: Both depth limits specified
        test_cat_1 = selector0.within_magnitude_range(upper_mag=7.5,
                                                      lower_mag=5.5)
        np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
                                             np.array([6., 7.]))
コード例 #25
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
 def test_input_checks_sets_magnitude_interval(self):
     fake_completeness_table = 0.0
     catalogue = Catalogue.make_from_dict({'year': [1900]})
     config = {'magnitude_interval' : 0.1}
     cmag, ctime, ref_mag, dmag, _ = rec_utils.input_checks(catalogue,
             config, fake_completeness_table)
     self.assertEqual(0.1, dmag)
コード例 #26
0
ファイル: kijko_smit_test.py プロジェクト: zhhongsh/oq-engine
 def test_kijko_smit_set_reference_magnitude(self):
     completeness_table = np.array([[1900, 1.0]])
     catalogue = Catalogue.make_from_dict(
         {'magnitude': np.array([5.0, 6.0]),
          'year': np.array([2000, 2000])})
     config = {'reference_magnitude': 0.0}
     self.ks_ml.calculate(catalogue, config, completeness_table)
コード例 #27
0
 def test_input_checks_use_reference_magnitude(self):
     fake_completeness_table = 0.0
     catalogue = Catalogue.make_from_dict({'year': [1900]})
     config = {'reference_magnitude': 3.0}
     cmag, ctime, ref_mag, dmag, _ = rec_utils.input_checks(catalogue,
                                                            config, fake_completeness_table)
     self.assertEqual(3.0, ref_mag)
コード例 #28
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
 def test_input_checks_use_reference_magnitude(self):
     fake_completeness_table = 0.0
     catalogue = Catalogue.make_from_dict({'year': [1900]})
     config = {'reference_magnitude' : 3.0}
     cmag, ctime, ref_mag, dmag, _ = rec_utils.input_checks(catalogue,
             config, fake_completeness_table)
     self.assertEqual(3.0, ref_mag)
コード例 #29
0
    def test_select_events_within_cell(self):
        # Tests the selection of events within a cell centred on the point
        self.point_source = mtkPointSource('101', 'A Point Source')
        simple_point = Point(4.5, 4.5)
        self.point_source.create_geometry(simple_point, 0., 30.)
        self.catalogue = Catalogue()
        self.catalogue.data['eventID'] = np.arange(0, 7, 1)
        self.catalogue.data['longitude'] = np.arange(4.0, 7.5, 0.5)
        self.catalogue.data['latitude'] = np.arange(4.0, 7.5, 0.5)
        self.catalogue.data['depth'] = np.ones(7, dtype=float)
        selector0 = CatalogueSelector(self.catalogue)

        # Simple case - 200 km by 200 km cell centred on point
        self.point_source.select_catalogue_within_cell(selector0, 100.)
        np.testing.assert_array_almost_equal(
            np.array([4., 4.5, 5.]),
            self.point_source.catalogue.data['longitude'])

        np.testing.assert_array_almost_equal(
            np.array([4., 4.5, 5.]),
            self.point_source.catalogue.data['latitude'])

        np.testing.assert_array_almost_equal(
            np.array([1., 1., 1.]),
            self.point_source.catalogue.data['depth'])
コード例 #30
0
    def test_get_even_magnitude_completeness(self):
        '''
        Tests the function to render an evenly spaced completeness table at
        0.1 interval spacing
        '''
        # Common case - many rows
        self.catalogue = Catalogue()
        self.catalogue.data['magnitude'] = np.array([4.5, 5.0])
        comp_table = np.array([[1990., 4.0],
                               [1960., 4.5],
                               [1900., 4.8]])
        expected_table = np.array([[1990., 4.0],
                                   [1990., 4.1],
                                   [1990., 4.2],
                                   [1990., 4.3],
                                   [1990., 4.4],
                                   [1960., 4.5],
                                   [1960., 4.6],
                                   [1960., 4.7],
                                   [1900., 4.8],
                                   [1900., 4.9],
                                   [1900., 5.0]])
        np.testing.assert_array_almost_equal(expected_table,
                                             utils.get_even_magnitude_completeness(comp_table,
                                                                                   self.catalogue)[0])

        # Common case - only one value
        comp_table = np.array([[1990., 4.0]])
        np.testing.assert_array_almost_equal(np.array([[1990., 4.0]]),
                                             utils.get_even_magnitude_completeness(comp_table,
                                                                                   self.catalogue)[0])
コード例 #31
0
ファイル: test_selector.py プロジェクト: gem/oq-hazardlib
    def test_select_within_depth_range(self):
        # Tests the function to select within the depth range

        # Setup function
        self.catalogue = Catalogue()
        self.catalogue.data['depth'] = np.array([5., 15., 25., 35., 45.])

        selector0 = CatalogueSelector(self.catalogue)
        # Test case 1: No limits specified - all catalogue valid
        test_cat_1 = selector0.within_depth_range()
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             self.catalogue.data['depth'])

        # Test case 2: Lower depth limit specfied only
        test_cat_1 = selector0.within_depth_range(lower_depth=30.)
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             np.array([5., 15., 25.]))
        # Test case 3: Upper depth limit specified only
        test_cat_1 = selector0.within_depth_range(upper_depth=20.)
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             np.array([25., 35., 45.]))

        # Test case 4: Both depth limits specified
        test_cat_1 = selector0.within_depth_range(upper_depth=20.,
                                                  lower_depth=40.)
        np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
                                             np.array([25., 35.]))
コード例 #32
0
 def setUp(self):
     """
     This generates a minimum data-set to be used for the regression.
     """
     # Test A: Generates a data set assuming b=1 and N(m=4.0)=10.0 events
     self.dmag = 0.1
     mext = np.arange(4.0, 7.01, 0.1)
     self.mval = mext[0:-1] + self.dmag / 2.0
     self.bval = 1.0
     self.numobs = np.flipud(
         np.diff(np.flipud(10.0 ** (-self.bval * mext + 8.0))))
     # Test B: Generate a completely artificial catalogue using the
     # Gutenberg-Richter distribution defined above
     numobs = np.around(self.numobs)
     size = int(np.sum(self.numobs))
     magnitude = np.zeros(size)
     lidx = 0
     for mag, nobs in zip(self.mval, numobs):
         uidx = int(lidx + nobs)
         magnitude[lidx:uidx] = mag + 0.01
         lidx = uidx
     year = np.ones(size) * 1999
     self.catalogue = Catalogue.make_from_dict(
         {'magnitude': magnitude, 'year': year})
     # Create the seismicity occurrence calculator
     self.aki_ml = AkiMaxLikelihood()
コード例 #33
0
ファイル: kijko_smit_test.py プロジェクト: gem/oq-hazardlib
 def test_kijko_smit_set_reference_magnitude(self):
     completeness_table = np.array([[1900, 1.0]])
     catalogue = Catalogue.make_from_dict(
         {'magnitude': np.array([5.0, 6.0]),
          'year': np.array([2000, 2000])})
     config = {'reference_magnitude': 0.0}
     self.ks_ml.calculate(catalogue, config, completeness_table)
コード例 #34
0
    def test_analysis_Frankel_comparison(self):
        '''
        To test the run_analysis function we compare test results with those
        from Frankel's fortran implementation, under the same conditions
        '''
        self.grid_limits = [-128., -113.0, 0.2, 30., 43.0, 0.2, 0., 100., 100.]
        comp_table = np.array([[1933., 4.0], [1900., 5.0], [1850., 6.0],
                               [1850., 7.0]])
        config = {'Length_Limit': 3., 'BandWidth': 50., 'increment': 0.1}
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=0.8)
        self.catalogue = Catalogue()
        frankel_catalogue = np.genfromtxt(
            os.path.join(BASE_PATH, FRANKEL_TEST_CATALOGUE))
        self.catalogue.data['magnitude'] = frankel_catalogue[:, 0]
        self.catalogue.data['longitude'] = frankel_catalogue[:, 1]
        self.catalogue.data['latitude'] = frankel_catalogue[:, 2]
        self.catalogue.data['depth'] = frankel_catalogue[:, 3]
        self.catalogue.data['year'] = frankel_catalogue[:, 4]
        self.catalogue.end_year = 2006
        frankel_results = np.genfromtxt(
            os.path.join(BASE_PATH, FRANKEL_OUTPUT_FILE))
        # Run analysis
        output_data = self.model.run_analysis(
            self.catalogue,
            config,
            completeness_table=comp_table,
            smoothing_kernel=IsotropicGaussian())

        self.assertTrue(
            fabs(np.sum(output_data[:, -1]) -
                 np.sum(output_data[:, -2])) < 1.0)
        self.assertTrue(fabs(np.sum(output_data[:, -1]) - 390.) < 1.0)
コード例 #35
0
    def test_select_within_distance(self):
        '''
        Tests the selection of earthquakes within distance of fault
        '''
        # Create fault
        self.fault_source = mtkComplexFaultSource('101', 'A complex fault')
        # Test case when input as list of nhlib.geo.line.Line
        self.fault_source.create_geometry(self.trace_line, mesh_spacing=2.0)
        self.assertIsInstance(self.fault_source.geometry, ComplexFaultSurface)

        # Create simple catalogue
        self.catalogue.data['longitude'] = np.arange(0., 4.1, 0.1)
        self.catalogue.data['latitude'] = np.arange(0., 4.1, 0.1)
        self.catalogue.data['depth'] = np.ones(41, dtype=float)
        self.catalogue.data['eventID'] = np.arange(0, 41, 1)
        selector0 = CatalogueSelector(self.catalogue)

        # Test when considering Joyner-Boore distance
        self.fault_source.select_catalogue(selector0, 50.)
        np.testing.assert_array_equal(
            self.fault_source.catalogue.data['eventID'], np.arange(2, 14, 1))

        # Test when considering rupture distance
        self.fault_source.select_catalogue(selector0, 50., 'rupture')
        np.testing.assert_array_equal(
            self.fault_source.catalogue.data['eventID'], np.arange(2, 12, 1))

        # The usual test to ensure error is raised when no events in catalogue
        self.catalogue = Catalogue()
        selector0 = CatalogueSelector(self.catalogue)
        with self.assertRaises(ValueError) as ver:
            self.fault_source.select_catalogue(selector0, 40.0)
        self.assertEqual(str(ver.exception), 'No events found in catalogue!')
コード例 #36
0
 def setUp(self):
     """
     This generates a minimum data-set to be used for the regression.
     """
     # Test A: Generates a data set assuming b=1 and N(m=4.0)=10.0 events
     self.dmag = 0.1
     mext = np.arange(4.0, 7.01, 0.1)
     self.mval = mext[0:-1] + self.dmag / 2.0
     self.bval = 1.0
     self.numobs = np.flipud(
         np.diff(np.flipud(10.0 ** (-self.bval * mext + 8.0))))
     # Test B: Generate a completely artificial catalogue using the
     # Gutenberg-Richter distribution defined above
     numobs = np.around(self.numobs)
     size = int(np.sum(self.numobs))
     magnitude = np.zeros(size)
     lidx = 0
     for mag, nobs in zip(self.mval, numobs):
         uidx = int(lidx + nobs)
         magnitude[lidx:uidx] = mag + 0.01
         lidx = uidx
     year = np.ones(size) * 1999
     self.catalogue = Catalogue.make_from_dict(
         {'magnitude': magnitude, 'year': year})
     # Create the seismicity occurrence calculator
     self.aki_ml = AkiMaxLikelihood()
コード例 #37
0
ファイル: weichert_test.py プロジェクト: yasser64b/oq-engine
 def setUp(self):
     """
     Sets up the test catalogue to be used for the Weichert algorithm
     """
     cat_file = os.path.join(BASE_DATA_PATH, "synthetic_test_cat1.csv")
     raw_data = np.genfromtxt(cat_file, delimiter=",")
     neq = raw_data.shape[0]
     self.catalogue = Catalogue.make_from_dict({
         "eventID":
         raw_data[:, 0].astype(int),
         "year":
         raw_data[:, 1].astype(int),
         "dtime":
         raw_data[:, 2],
         "longitude":
         raw_data[:, 3],
         "latitude":
         raw_data[:, 4],
         "magnitude":
         raw_data[:, 5],
         "depth":
         raw_data[:, 6]
     })
     self.config = {"reference_magnitude": 3.0}
     self.completeness = np.array([[1990., 3.0], [1975., 4.0], [1960., 5.0],
                                   [1930., 6.0], [1910., 7.0]])
コード例 #38
0
    def test_catalogue_writer_only_mag_table_purging(self):
        '''
        Tests the writer only purging according to the magnitude table
        '''
        # Write to file
        writer = CsvCatalogueWriter(self.output_filename)
        writer.write_file(self.catalogue, magnitude_table=self.magnitude_table)
        parser = CsvCatalogueParser(self.output_filename)
        cat2 = parser.read_file()

        expected_catalogue = Catalogue()
        expected_catalogue.data['eventID'] = ['1', '3', '5']
        expected_catalogue.data['magnitude'] = np.array([5.6, 4.8, 5.0])
        expected_catalogue.data['year'] = np.array([1960, 1970, 1990])
        expected_catalogue.data['ErrorStrike'] = np.array([np.nan, np.nan,
                                                          np.nan])
        self.check_catalogues_are_equal(expected_catalogue, cat2)
コード例 #39
0
    def test_catalogue_writer_only_flag_purging(self):
        '''
        Tests the writer only purging according to the flag
        '''
        # Write to file
        writer = CsvCatalogueWriter(self.output_filename)
        writer.write_file(self.catalogue, flag_vector=self.flag)
        parser = CsvCatalogueParser(self.output_filename)
        cat2 = parser.read_file()

        expected_catalogue = Catalogue()
        expected_catalogue.data['eventID'] = ['1', '2', '3', '4']
        expected_catalogue.data['magnitude'] = np.array([5.6, 5.4, 4.8, 4.3])
        expected_catalogue.data['year'] = np.array([1960, 1965, 1970, 1980])
        expected_catalogue.data['ErrorStrike'] = np.array([np.nan, np.nan,
                                                           np.nan, np.nan])
        self.check_catalogues_are_equal(expected_catalogue, cat2)
コード例 #40
0
ファイル: utils_test.py プロジェクト: tieganh/oq-engine
 def test_input_checks_simple_input(self):
     completeness_table = [[1900, 2.0]]
     catalogue = Catalogue.make_from_dict({
         'magnitude': [5.0, 6.0],
         'year': [2000, 2000]
     })
     config = {}
     rec_utils.input_checks(catalogue, config, completeness_table)
コード例 #41
0
ファイル: catalogue.py プロジェクト: GEMScienceTools/oq-mbtk
def from_df(df, end_year=None):
    """
    Converts a dataframe into a
    :class:`openquake.hmtk.seismicity.catalogue.Catalogue` instance

    :param df:
        The dataframe with the catalogue
    :returns:
        The catalogue instance
    """
    cat = Catalogue()
    for column in df:
        if (column in Catalogue.FLOAT_ATTRIBUTE_LIST
                or column in Catalogue.INT_ATTRIBUTE_LIST):
            cat.data[column] = df[column].to_numpy()
        else:
            cat.data[column] = df[column]
    cat.end_year = np.max(df.year) if end_year is None else end_year
    return cat
コード例 #42
0
def get_catalogue_from_ses(fname, duration):
    """
    Converts a set of ruptures into an instance of
    :class:`openquake.hmtk.seismicity.catalogue.Catalogue`.

    :param fname:
        Name of the .csv file
    :param float duration:
        Duration [in years] of the SES
    :returns:
        A :class:`openquake.hmtk.seismicity.catalogue.Catalogue` instance
    """
    # Read the set of ruptures
    ses = pd.read_csv(fname, sep='\t', skiprows=1)
    if len(ses.columns) < 2:
        ses = pd.read_csv(fname, sep=',', skiprows=1)
    # Create an empty catalogue
    cat = Catalogue()
    # Set catalogue data
    cnt = 0
    year = []
    eventids = []
    mags = []
    lons = []
    lats = []
    deps = []
    print(ses['rup_id'])
    print('Columns:', ses.columns)
    for i in range(len(ses)):
        nevents = ses['multiplicity'][i]
        for j in range(nevents):
            eventids.append(':d'.format(cnt))
            mags.append(ses['mag'].values[i])
            lons.append(ses['centroid_lon'].values[i])
            lats.append(ses['centroid_lat'].values[i])
            deps.append(ses['centroid_depth'].values[i])
            cnt += 1
            year.append(numpy.random.random_integers(1, duration, 1))

    data = {}
    year = numpy.array(year, dtype=int)
    data['year'] = year
    data['month'] = numpy.ones_like(year, dtype=int)
    data['day'] = numpy.ones_like(year, dtype=int)
    data['hour'] = numpy.zeros_like(year, dtype=int)
    data['minute'] = numpy.zeros_like(year, dtype=int)
    data['second'] = numpy.zeros_like(year)
    data['magnitude'] = numpy.array(mags)
    data['longitude'] = numpy.array(lons)
    data['latitude'] = numpy.array(lats)
    data['depth'] = numpy.array(deps)
    data['eventID'] = eventids
    cat.data = data
    cat.end_year = duration
    cat.start_year = 0
    cat.data['dtime'] = cat.get_decimal_time()
    return cat
コード例 #43
0
 def test_catalogue_mt_filter(self):
     # Tests the catalogue magnitude-time filter
     cat = Catalogue()
     cat.load_from_array(['year', 'magnitude'], self.data_array)
     cat.data['eventID'] = np.arange(0, 7)
     cat.catalogue_mt_filter(self.mt_table)
     mag = np.array([7.0, 5.5, 5.01, 6.99])
     yea = np.array([1920, 1970, 1960, 1960])
     np.testing.assert_allclose(cat.data['magnitude'], mag)
     np.testing.assert_allclose(cat.data['year'], yea)
コード例 #44
0
def build_catalogue_from_file(filename):
    """
    Creates a "minimal" catalogue from a raw csv file
    """
    raw_data = np.genfromtxt(filename, delimiter=",")
    return Catalogue.make_from_dict({"eventID": raw_data[:, 0].astype(int),
                                     "year": raw_data[:, 1].astype(int),
                                     "dtime": raw_data[:, 2],
                                     "longitude": raw_data[:, 3],
                                     "latitude": raw_data[:, 4],
                                     "magnitude": raw_data[:, 5],
                                     "depth": raw_data[:, 6]})
コード例 #45
0
 def test_update_start_end_year(self):
     # Tests the correct usage of the update start year
     cat1 = Catalogue()
     cat1.data['year'] = np.array([1900, 1950, 2000])
     # Update start year
     cat1.update_start_year()
     self.assertEqual(cat1.start_year, 1900)
     # Update end-year
     cat1.update_end_year()
     self.assertEqual(cat1.end_year, 2000)
コード例 #46
0
def build_catalogue_from_file(filename):
    """
    Creates a "minimal" catalogue from a raw csv file
    """
    raw_data = np.genfromtxt(filename, delimiter=",")
    return Catalogue.make_from_dict({"eventID": raw_data[:, 0].astype(int),
                                     "year": raw_data[:, 1].astype(int),
                                     "dtime": raw_data[:, 2],
                                     "longitude": raw_data[:, 3],
                                     "latitude": raw_data[:, 4],
                                     "magnitude": raw_data[:, 5],
                                     "depth": raw_data[:, 6]})
コード例 #47
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def setUp(self):
     self.catalogue = Catalogue()
     x, y = np.meshgrid(np.arange(1915., 2010., 10.),
                        np.arange(5.5, 9.0, 1.0))
     nx, ny = np.shape(x)
     self.catalogue.data['magnitude'] = (y.reshape([nx * ny, 1])).flatten()
     x = (x.reshape([nx * ny, 1])).flatten()
     self.catalogue.data['year'] = x.astype(int)
     self.catalogue.data['month'] = np.ones_like(x, dtype=int)
     self.catalogue.data['day'] = np.ones_like(x, dtype=int)
     self.catalogue.data['hour'] = np.ones_like(x, dtype=int)
     self.catalogue.data['minute'] = np.ones_like(x, dtype=int)
     self.catalogue.data['second'] = np.ones_like(x, dtype=float)
コード例 #48
0
    def test_get_decimal_time(self):
        # Tests the decimal time function. The function itself is tested in
        # tests.seismicity.utils so only minimal testing is undertaken here to
        # ensure coverage
        time_dict = {
            'year': np.array([1990, 2000]),
            'month': np.array([3, 9]),
            'day': np.ones(2, dtype=int),
            'hour': np.ones(2, dtype=int),
            'minute': np.ones(2, dtype=int),
            'second': np.ones(2, dtype=float)
        }
        expected_dec_time = decimal_time(time_dict['year'], time_dict['month'],
                                         time_dict['day'], time_dict['hour'],
                                         time_dict['minute'],
                                         time_dict['second'])

        cat = Catalogue()
        for key in ['year', 'month', 'day', 'hour', 'minute', 'second']:
            cat.data[key] = np.copy(time_dict[key])
        np.testing.assert_array_almost_equal(expected_dec_time,
                                             cat.get_decimal_time())
コード例 #49
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
    def test_get_decimal_time(self):
        # Tests the decimal time function. The function itself is tested in
        # tests.seismicity.utils so only minimal testing is undertaken here to
        # ensure coverage
        time_dict = {'year': np.array([1990, 2000]),
                     'month': np.array([3, 9]),
                     'day': np.ones(2, dtype=int),
                     'hour': np.ones(2, dtype=int),
                     'minute': np.ones(2, dtype=int),
                     'second': np.ones(2, dtype=float)}
        expected_dec_time = decimal_time(time_dict['year'],
                                         time_dict['month'],
                                         time_dict['day'],
                                         time_dict['hour'],
                                         time_dict['minute'],
                                         time_dict['second'])

        cat = Catalogue()
        for key in ['year', 'month', 'day', 'hour', 'minute', 'second']:
            cat.data[key] = np.copy(time_dict[key])
        np.testing.assert_array_almost_equal(expected_dec_time,
                                             cat.get_decimal_time())
コード例 #50
0
 def setUp(self):
     warnings.simplefilter("ignore")
     self.catalogue = Catalogue()
     self.fault_source = None
     self.trace_line = [line.Line([point.Point(1.0, 0.0, 1.0),
                                   point.Point(0.0, 1.0, 0.9)])]
     self.trace_line.append(line.Line([point.Point(1.2, 0.0, 40.),
                                       point.Point(1.0, 1.0, 45.),
                                       point.Point(0.0, 1.3, 42.)]))
     self.trace_array = [np.array([[1.0, 0.0, 1.0], [0.0, 1.0, 0.9]])]
     self.trace_array.append(np.array([[1.2, 0.0, 40.],
                                       [1.0, 1.0, 45.],
                                       [0.0, 1.3, 42.]]))
コード例 #51
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
 def test_generate_synthetic_catalogues(self):
     '''
     Tests the openquake.hmtk.seismicity.occurence.utils function
     generate_synthetic_magnitudes
     '''
     bvals = []
     # Generate set of synthetic catalogues
     for i in range(0, 100):
         cat1 = rec_utils.generate_synthetic_magnitudes(4.5, 1.0, 4.0, 8.0,
                                                        1000)
         bvals.append(self.occur.calculate(
             Catalogue.make_from_dict(cat1))[0])
     bvals = np.array(bvals)
     self.assertAlmostEqual(np.mean(bvals), 1.0, 1)
コード例 #52
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
 def test_generate_magnitudes(self):
     '''
     Tests the openquake.hmtk.seismicity.occurence.utils function
     generate_trunc_gr_magnitudes
     '''
     bvals = []
     # Generate set of synthetic catalogues
     for _ in range(0, 100):
         mags = rec_utils.generate_trunc_gr_magnitudes(1.0, 4.0, 8.0, 1000)
         cat = Catalogue.make_from_dict(
             {'magnitude': mags,
              'year': np.zeros(len(mags), dtype=int)})
         bvals.append(self.occur.calculate(cat)[0])
     bvals = np.array(bvals)
     self.assertAlmostEqual(np.mean(bvals), 1.0, 1)
コード例 #53
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def test_update_start_end_year(self):
     # Tests the correct usage of the update start year
     cat1 = Catalogue()
     cat1.data['year'] = np.array([1900, 1950, 2000])
     # Update start year
     cat1.update_start_year()
     self.assertEqual(cat1.start_year, 1900)
     # Update end-year
     cat1.update_end_year()
     self.assertEqual(cat1.end_year, 2000)
コード例 #54
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
 def test_catalogue_mt_filter(self):
     # Tests the catalogue magnitude-time filter
     cat = Catalogue()
     cat.load_from_array(['year', 'magnitude'], self.data_array)
     cat.data['eventID'] = np.arange(0, 7)
     cat.catalogue_mt_filter(self.mt_table)
     mag = np.array([7.0, 5.5, 5.01, 6.99])
     yea = np.array([1920, 1970, 1960, 1960])
     np.testing.assert_allclose(cat.data['magnitude'], mag)
     np.testing.assert_allclose(cat.data['year'], yea)
コード例 #55
0
class TestGetDistributions(unittest.TestCase):
    """
    Class to test the openquake.hmtk.seismicity.catalogue.Catalogue methods to
    determine depth distribution, magnitude-depth distribution,
    and magnitude-time distribution
    """

    def setUp(self):
        self.catalogue = Catalogue()

    def test_depth_distribution_no_depth_error(self):
        # ensure error is raised when no depths are found in catalogue
        depth_bins = np.arange(0., 60., 10.)
        self.catalogue.data['depth'] = np.array([])
        with self.assertRaises(ValueError) as ae:
            self.catalogue.get_depth_distribution(depth_bins)
        self.assertEqual(str(ae.exception),
                         'Depths missing in catalogue')

    def test_depth_distribution_simple(self):
        # Tests the calculation of the depth histogram with no uncertainties
        # Without normalisation
        self.catalogue.data['depth'] = np.arange(5., 50., 5.)
        depth_bins = np.arange(0., 60., 10.)
        expected_array = np.array([1., 2., 2., 2., 2.])
        np.testing.assert_array_almost_equal(
            expected_array,
            self.catalogue.get_depth_distribution(depth_bins))
        # With normalisation
        np.testing.assert_array_almost_equal(
            expected_array / np.sum(expected_array),
            self.catalogue.get_depth_distribution(depth_bins,
                                                  normalisation=True))

    def test_depth_distribution_uncertainties(self):
        # Tests the depth distribution with uncertainties

        # Without normalisation
        self.catalogue.data['depth'] = np.arange(5., 50., 5.)
        self.catalogue.data['depthError'] = 3. * np.ones_like(
            self.catalogue.data['depth'])
        depth_bins = np.arange(-10., 70., 10.)
        expected_array = np.array([0., 1.5, 2., 2., 2., 1.5, 0.])
        hist_array = self.catalogue.get_depth_distribution(depth_bins,
                                                           bootstrap=1000)
        array_diff = np.round(hist_array, 1) - expected_array
        self.assertTrue(np.all(np.fabs(array_diff) < 0.2))
        # With normalisation
        expected_array = np.array([0., 0.16, 0.22, 0.22, 0.22, 0.16, 0.01])
        hist_array = self.catalogue.get_depth_distribution(depth_bins,
                                                           normalisation=True,
                                                           bootstrap=1000)
        array_diff = np.round(hist_array, 2) - expected_array
        self.assertTrue(np.all(np.fabs(array_diff) < 0.03))
コード例 #56
0
    def setUp(self):
        """
        This generates a catalogue to be used for the regression.
        """
        # Generates a data set assuming b=1
        self.dmag = 0.1
        mext = np.arange(4.0, 7.01, 0.1)
        self.mval = mext[0:-1] + self.dmag / 2.0
        self.bval = 1.0
        numobs = np.flipud(np.diff(np.flipud(10.0**(-self.bval*mext+7.0))))

        # Define completeness window
        numobs[0:6] *= 10
        numobs[6:13] *= 20
        numobs[13:22] *= 50
        numobs[22:] *= 100

        compl = np.array([[1900, 1950, 1980, 1990], [6.34, 5.44, 4.74, 3.0]])
        print(compl)
        self.compl = compl.transpose()
        print('completeness')
        print(self.compl)
        print(self.compl.shape)

        numobs = np.around(numobs)
        print(numobs)

        magnitude = np.zeros(int(np.sum(numobs)))
        year = np.zeros(int(np.sum(numobs))) * 1999

        lidx = 0
        for mag, nobs in zip(self.mval, numobs):
            uidx = int(lidx+nobs)
            magnitude[lidx:uidx] = mag + 0.01
            year_low = compl[0, np.min(np.nonzero(compl[1, :] < mag)[0])]
            year[lidx:uidx] = (year_low + np.random.rand(uidx-lidx) *
                               (2000-year_low))
            print('%.2f %.0f %.0f' % (mag, np.min(year[lidx:uidx]),
                                      np.max(year[lidx:uidx])))
            lidx = uidx

        self.catalogue = Catalogue.make_from_dict(
            {'magnitude': magnitude, 'year': year})
        self.b_ml = BMaxLikelihood()
        self.config = {'Average Type': 'Weighted'}
コード例 #57
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
 def setUp(self):
     cat_file = os.path.join(BASE_DATA_PATH, "synthetic_test_cat1.csv")
     raw_data = np.genfromtxt(cat_file, delimiter=",")
     neq = raw_data.shape[0]
     self.catalogue = Catalogue.make_from_dict({
         "eventID": raw_data[:, 0].astype(int),
         "year": raw_data[:, 1].astype(int),
         "dtime": raw_data[:, 2],
         "longitude": raw_data[:, 3],
         "latitude": raw_data[:, 4],
         "magnitude": raw_data[:, 5],
         "depth": raw_data[:, 6]})
     self.config = {"reference_magnitude": 3.0}
     self.completeness = np.array([[1990., 3.0],
                                   [1975., 4.0],
                                   [1960., 5.0],
                                   [1930., 6.0],
                                   [1910., 7.0]])
コード例 #58
0
ファイル: catalogue_test.py プロジェクト: gem/oq-hazardlib
    def test_purge_catalogue(self):
        # Tests the function to purge the catalogue of invalid events
        cat1 = Catalogue()
        cat1.data['eventID'] = np.array([100, 101, 102], dtype=int)
        cat1.data['magnitude'] = np.array([4., 5., 6.], dtype=float)
        cat1.data['Agency'] = ['XXX', 'YYY', 'ZZZ']

        flag_vector = np.array([False, True, False])
        cat1.purge_catalogue(flag_vector)
        np.testing.assert_array_almost_equal(cat1.data['magnitude'],
                                             np.array([5.]))
        np.testing.assert_array_equal(cat1.data['eventID'],
                                      np.array([101]))
        self.assertListEqual(cat1.data['Agency'], ['YYY'])
コード例 #59
0
ファイル: test_selector.py プロジェクト: gem/oq-hazardlib
    def test_create_cluster_set(self):
        """

        """
        # Setup function
        self.catalogue = Catalogue()
        self.catalogue.data["EventID"] = np.array([1, 2, 3, 4, 5, 6])
        self.catalogue.data["magnitude"] = np.array([7.0, 5.0, 5.0,
                                                     5.0, 4.0, 4.0])
        selector0 = CatalogueSelector(self.catalogue)
        vcl = np.array([0, 1, 1, 1, 2, 2])
        cluster_set = selector0.create_cluster_set(vcl)
        np.testing.assert_array_equal(cluster_set[0].data["EventID"],
                                      np.array([1]))
        np.testing.assert_array_almost_equal(cluster_set[0].data["magnitude"],
                                             np.array([7.0]))
        np.testing.assert_array_equal(cluster_set[1].data["EventID"],
                                      np.array([2, 3, 4]))
        np.testing.assert_array_almost_equal(cluster_set[1].data["magnitude"],
                                             np.array([5.0, 5.0, 5.0]))
        np.testing.assert_array_equal(cluster_set[2].data["EventID"],
                                      np.array([5, 6]))
        np.testing.assert_array_almost_equal(cluster_set[2].data["magnitude"],
                                             np.array([4.0, 4.0])) 
コード例 #60
0
ファイル: utils_test.py プロジェクト: gem/oq-hazardlib
 def test_input_checks_use_a_float_for_completeness(self):
     fake_completeness_table = 0.0
     catalogue = Catalogue.make_from_dict({'year': [1900]})
     config = {}
     rec_utils.input_checks(catalogue, config, fake_completeness_table)