import tensorflow as tf import os import yaml from openrave_manager import OpenraveManager from potential_point import PotentialPoint is_gpu = tf.test.is_gpu_available() config_path = os.path.join(os.getcwd(), 'config/config.yml') with open(config_path, 'r') as yml_file: config = yaml.load(yml_file) potential_points = PotentialPoint.from_config(config) openrave_manager = OpenraveManager(0.01, potential_points) random_joints = openrave_manager.get_random_joints() print 'has gpu result {}'.format(is_gpu) print 'random joints result {}'.format(random_joints)
class OpenraveTrajectoryGenerator: def __init__(self, config): self.action_step_size = config["openrave_rl"]["action_step_size"] self.goal_sensitivity = config["openrave_rl"]["goal_sensitivity"] self.challenging_trajectories_only = config["openrave_planner"][ "challenging_trajectories_only"] self.planner_iterations_start = config["openrave_planner"][ "planner_iterations_start"] self.planner_iterations_increase = config["openrave_planner"][ "planner_iterations_increase"] self.planner_iterations_decrease = config["openrave_planner"][ "planner_iterations_decrease"] self.max_planner_iterations = self.planner_iterations_start self.openrave_manager = OpenraveManager( config["openrave_rl"]["segment_validity_step"], PotentialPoint.from_config(config), ) def is_below_goal_sensitivity(self, start_joints, goal_joints): start_pose = self.openrave_manager.get_target_pose(start_joints) goal_pose = self.openrave_manager.get_target_pose(goal_joints) pose_distance = np.linalg.norm( np.array(start_pose) - np.array(goal_pose)) return pose_distance < self.goal_sensitivity def find_random_trajectory_single_try(self): # select at random start_joints = self.openrave_manager.get_random_joints({0: 0.0}) goal_joints = self.openrave_manager.get_random_joints({0: 0.0}) # if the start and goal are too close, re-sample if self.is_below_goal_sensitivity(start_joints, goal_joints): return None start_pose = self.openrave_manager.get_target_pose(start_joints) goal_pose = self.openrave_manager.get_target_pose(goal_joints) # valid region: if not self._is_valid_region(start_pose, goal_pose): return None # trajectories that must cross an obstacle if self.challenging_trajectories_only and not self._is_challenging( start_pose, goal_pose): return None traj = self.openrave_manager.plan(start_joints, goal_joints, self.max_planner_iterations) return traj def find_random_trajectory(self): # lower_size = 0.0 # when doing curriculum, this this is the lowest possible distance between start and goal while True: traj = self.find_random_trajectory_single_try() if traj is None: # if failed to plan, give more power self.max_planner_iterations += self.planner_iterations_increase elif (self.max_planner_iterations > self.planner_iterations_start + self.planner_iterations_decrease): # if plan was found, maybe we need less iterations self.max_planner_iterations -= self.planner_iterations_decrease return self.split_trajectory(traj, self.action_step_size) @staticmethod def _is_valid_region(start_pose, goal_pose): return start_pose[1] > 0.0 and goal_pose[1] > 0.0 def _is_challenging(self, start_pose, goal_pose): workspace_params = self.openrave_manager.loaded_params if workspace_params is None or workspace_params.number_of_obstacles == 0: return True # check if the distance from any obstacle is smaller that the start-goal-distance start = np.array(start_pose) goal = np.array(goal_pose) start_goal_distance = np.linalg.norm(start - goal) for i in range(workspace_params.number_of_obstacles): obstacle = np.array([ workspace_params.centers_position_x[i], workspace_params.centers_position_z[i], ]) start_obstacle_distance = np.linalg.norm(start - obstacle) goal_obstacle_distance = np.linalg.norm(goal - obstacle) if (start_obstacle_distance < start_goal_distance and goal_obstacle_distance < start_goal_distance): return True # all tests failed return False @staticmethod def split_trajectory(trajectory, action_step_size): res = [tuple(trajectory[0])] for i in range(len(trajectory) - 1): current_step = np.array(trajectory[i]) next_step = np.array(trajectory[i + 1]) difference = next_step - current_step difference_norm = np.linalg.norm(difference) if difference_norm < action_step_size: # if smaller than allowed step just append the next step res.append(tuple(trajectory[i + 1])) continue scaled_step = (action_step_size / difference_norm) * difference steps = [] for alpha in range( int(np.floor(difference_norm / action_step_size))): processed_step = current_step + (1 + alpha) * scaled_step steps.append(processed_step) # we probably have a leftover section, append it to res last_step_difference = np.linalg.norm(steps[-1] - next_step) if last_step_difference > 0.0: steps.append(next_step) # append to path res += [tuple(s) for s in steps] return res