def solveMocoInverse(): # Construct the MocoInverse tool. inverse = osim.MocoInverse() # Construct a ModelProcessor and set it on the tool. The default # muscles in the model are replaced with optimization-friendly # DeGrooteFregly2016Muscles, and adjustments are made to the default muscle # parameters. modelProcessor = osim.ModelProcessor('subject_walk_armless.osim') modelProcessor.append(osim.ModOpAddExternalLoads('grf_walk.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(1.0)) inverse.setModel(modelProcessor) # Construct a TableProcessor of the coordinate data and pass it to the # inverse tool. TableProcessors can be used in the same way as # ModelProcessors by appending TableOperators to modify the base table. # A TableProcessor with no operators, as we have here, simply returns the # base table. inverse.setKinematics(osim.TableProcessor('coordinates.sto')) # Initial time, final time, and mesh interval. inverse.set_initial_time(0.81) inverse.set_final_time(1.79) inverse.set_mesh_interval(0.02) # By default, Moco gives an error if the kinematics contains extra columns. # Here, we tell Moco to allow (and ignore) those extra columns. inverse.set_kinematics_allow_extra_columns(True) # Solve the problem and write the solution to a Storage file. solution = inverse.solve() solution.getMocoSolution().write( 'example3DWalking_MocoInverse_solution.sto') # Generate a PDF with plots for the solution trajectory. model = modelProcessor.process() report = osim.report.Report(model, 'example3DWalking_MocoInverse_solution.sto', bilateral=True) # The PDF is saved to the working directory. report.generate()
def getWalkingModel(): # Load the 19 DOF, 18 muscle model from file. model = osim.Model('subject_walk_armless_18musc.osim'); # Add actuators representing the pelvis residual actuators and lumbar # torques. These actuators are only as strong as they need to be for the # problem to converge. addCoordinateActuator(model, 'pelvis_tx', 60) addCoordinateActuator(model, 'pelvis_ty', 300) addCoordinateActuator(model, 'pelvis_tz', 35) addCoordinateActuator(model, 'pelvis_tilt', 60) addCoordinateActuator(model, 'pelvis_list', 35) addCoordinateActuator(model, 'pelvis_rotation', 25) addCoordinateActuator(model, 'lumbar_bending', 40) addCoordinateActuator(model, 'lumbar_extension', 40) addCoordinateActuator(model, 'lumbar_rotation', 25) # We need additional actuators for hip rotation and hip adduction since the # existing muscle act primarily in the sagittal plane. addCoordinateActuator(model, 'hip_rotation_r', 100) addCoordinateActuator(model, 'hip_rotation_l', 100) addCoordinateActuator(model, 'hip_adduction_r', 100) addCoordinateActuator(model, 'hip_adduction_l', 100) # Create a ModelProcessor to make additional modifications to the model. modelProcessor = osim.ModelProcessor(model) # Weld the subtalar and toe joints. jointsToWeld = osim.StdVectorString() jointsToWeld.append('subtalar_r') jointsToWeld.append('subtalar_l') jointsToWeld.append('mtp_r') jointsToWeld.append('mtp_l') modelProcessor.append(osim.ModOpReplaceJointsWithWelds(jointsToWeld)) # Apply the ground reaction forces to the model. modelProcessor.append(osim.ModOpAddExternalLoads('external_loads.xml')) # Update the muscles: ignore tendon compliance and passive forces, replace # muscle types with the DeGrooteFregly2016Muscle type, and scale the width # of the active force length curve. modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) # Add a set a weak reserves to the sagittal-plane joints in the model. modelProcessor.append(osim.ModOpAddReserves(1.0)) return modelProcessor
def solveMocoInverseMuscle(): #Construct the MocoInverse tool. inverse = osim.MocoInverse() inverse.setName('inverseMuscleTracking') #Construct a ModelProcessor and set it on the tool. #Currently the coordinate actuators for the pelvis, along with the reserve #actuators are fairly generally set, and not weighted at all in cost function. #These actuators could be more carefully considered to generate an appropriate #muscle driven simulation. For example, if they max and min control to 1 - the #pelvis actuators may not produce enough torque. modelProcessor = osim.ModelProcessor('scaledModelMuscle.osim') modelProcessor.append(osim.ModOpAddExternalLoads('Jog05_grf.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. # modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(2)) inverse.setModel(modelProcessor) #Construct a TableProcessor of the coordinate data and pass it to the #inverse tool. TableProcessors can be used in the same way as #ModelProcessors by appending TableOperators to modify the base table. #A TableProcessor with no operators, as we have here, simply returns the #base table. inverse.setKinematics(osim.TableProcessor('ikResults_states.sto')) #Initial time, final time, and mesh interval. inverse.set_initial_time(osim.Storage('ikResults_states.sto').getFirstTime()) inverse.set_final_time(osim.Storage('ikResults_states.sto').getLastTime()) inverse.set_mesh_interval(0.02) # By default, Moco gives an error if the kinematics contains extra columns. # Here, we tell Moco to allow (and ignore) those extra columns. inverse.set_kinematics_allow_extra_columns(True) # Solve the problem and write the solution to a Storage file. solution = inverse.solve() #Return the solution as an object that we can use return solution
def muscleDrivenStateTracking(): # Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName("muscle_driven_state_tracking") # Construct a ModelProcessor and set it on the tool. The default # muscles in the model are replaced with optimization-friendly # DeGrooteFregly2016Muscles, and adjustments are made to the default muscle # parameters. modelProcessor = osim.ModelProcessor("subject_walk_armless.osim") modelProcessor.append(osim.ModOpAddExternalLoads("grf_walk.xml")) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) track.setModel(modelProcessor) # Construct a TableProcessor of the coordinate data and pass it to the # tracking tool. TableProcessors can be used in the same way as # ModelProcessors by appending TableOperators to modify the base table. # A TableProcessor with no operators, as we have here, simply returns the # base table. track.setStatesReference(osim.TableProcessor("coordinates.sto")) track.set_states_global_tracking_weight(10) # This setting allows extra data columns contained in the states # reference that don't correspond to model coordinates. track.set_allow_unused_references(True) # Since there is only coordinate position data in the states references, # this setting is enabled to fill in the missing coordinate speed data using # the derivative of splined position data. track.set_track_reference_position_derivatives(True) # Initial time, final time, and mesh interval. track.set_initial_time(0.81) track.set_final_time(1.65) track.set_mesh_interval(0.08) # Instead of calling solve(), call initialize() to receive a pre-configured # MocoStudy object based on the settings above. Use this to customize the # problem beyond the MocoTrack interface. study = track.initialize() # Get a reference to the MocoControlCost that is added to every MocoTrack # problem by default. problem = study.updProblem() effort = osim.MocoControlGoal.safeDownCast( problem.updGoal("control_effort")) # Put a large weight on the pelvis CoordinateActuators, which act as the # residual, or 'hand-of-god', forces which we would like to keep as small # as possible. model = modelProcessor.process() model.initSystem() forceSet = model.getForceSet() for i in range(forceSet.getSize()): forcePath = forceSet.get(i).getAbsolutePathString() if 'pelvis' in str(forcePath): effort.setWeightForControl(forcePath, 10) # Solve and visualize. solution = study.solve() study.visualize(solution)
#Append settings for muscle models #Set to ignore tendon compliance modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) #Set to ignore conservative passive fiber forces modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) #Set the fiber damping low to limit non-conservative passive forces #This may also serve to limit the negative muscle forces that can happen modelProcessor.append(osim.ModOpFiberDampingDGF(1e-02)) ####### this parameter could be a factor in the different results coming up ####### along with te active force width (if that didn't change). default is 0.1 ####### so this shift may be quite large (the original 1e-05 that is)? #Scale active force width of muscles modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) ##### don't think active force width was altered either in original simulations... #Process and get a variable to call the model simModel = modelProcessor.process() #Clean up the printed out model file from the directory os.remove('simModel.osim') # %% Simulation set up #Create the Moco study study = osim.MocoStudy() #Initialise the problem
def solveMocoInverseWithEMG(): # This initial block of code is identical to the code above. inverse = osim.MocoInverse() modelProcessor = osim.ModelProcessor('subject_walk_armless.osim') modelProcessor.append(osim.ModOpAddExternalLoads('grf_walk.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(1.0)) inverse.setModel(modelProcessor) inverse.setKinematics(osim.TableProcessor('coordinates.sto')) inverse.set_initial_time(0.81) inverse.set_final_time(1.79) inverse.set_mesh_interval(0.02) inverse.set_kinematics_allow_extra_columns(True) study = inverse.initialize() problem = study.updProblem() # Add electromyography tracking. emgTracking = osim.MocoControlTrackingGoal('emg_tracking') emgTracking.setWeight(50.0) # Each column in electromyography.sto is normalized so the maximum value in # each column is 1.0. controlsRef = osim.TimeSeriesTable('electromyography.sto') # Scale the tracked muscle activity based on peak levels from # "Gait Analysis: Normal and Pathological Function" by # Perry and Burnfield, 2010 (digitized by Carmichael Ong). soleus = controlsRef.updDependentColumn('soleus') gasmed = controlsRef.updDependentColumn('gastrocnemius') tibant = controlsRef.updDependentColumn('tibialis_anterior') for t in range(0, controlsRef.getNumRows()): soleus[t] = 0.77 * soleus[t] gasmed[t] = 0.87 * gasmed[t] tibant[t] = 0.37 * tibant[t] emgTracking.setReference(osim.TableProcessor(controlsRef)) # Associate actuators in the model with columns in electromyography.sto. emgTracking.setReferenceLabel('/forceset/soleus_r', 'soleus') emgTracking.setReferenceLabel('/forceset/gasmed_r', 'gastrocnemius') emgTracking.setReferenceLabel('/forceset/gaslat_r', 'gastrocnemius') emgTracking.setReferenceLabel('/forceset/tibant_r', 'tibialis_anterior') problem.addGoal(emgTracking) # Solve the problem and write the solution to a Storage file. solution = study.solve() solution.write('example3DWalking_MocoInverseWithEMG_solution.sto') # Write the reference data in a way that's easy to compare to the solution. controlsRef.removeColumn('medial_hamstrings') controlsRef.removeColumn('biceps_femoris') controlsRef.removeColumn('vastus_lateralis') controlsRef.removeColumn('vastus_medius') controlsRef.removeColumn('rectus_femoris') controlsRef.removeColumn('gluteus_maximus') controlsRef.removeColumn('gluteus_medius') controlsRef.setColumnLabels( ['/forceset/soleus_r', '/forceset/gasmed_r', '/forceset/tibant_r']) controlsRef.appendColumn('/forceset/gaslat_r', gasmed) osim.STOFileAdapter.write(controlsRef, 'controls_reference.sto') # Generate a report comparing MocoInverse solutions without and with EMG # tracking. model = modelProcessor.process() output = 'example3DWalking_MocoInverseWithEMG_report.pdf' ref_files = [ 'example3DWalking_MocoInverseWithEMG_solution.sto', 'controls_reference.sto' ] report = osim.report.Report(model, 'example3DWalking_MocoInverse_solution.sto', output=output, bilateral=True, ref_files=ref_files) # The PDF is saved to the working directory. report.generate()
def muscleDrivenStateTracking(): #Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName('muscleDrivenStateTracking') #Construct a ModelProcessor and set it on the tool. #Currently the coordinate actuators for the pelvis, along with the reserve #actuators are fairly generally set, and not weighted at all in cost function. #These actuators could be more carefully considered to generate an appropriate #muscle driven simulation. For example, if they max and min control to 1 - the #pelvis actuators may not produce enough torque. modelProcessor = osim.ModelProcessor('scaledModelMuscle.osim') modelProcessor.append(osim.ModOpAddExternalLoads('Jog05_grf.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(2)) track.setModel(modelProcessor) #Construct a TableProcessor of the coordinate data and pass it to the #tracking tool. TableProcessors can be used in the same way as #ModelProcessors by appending TableOperators to modify the base table. #A TableProcessor with no operators, as we have here, simply returns the #base table. track.setStatesReference(osim.TableProcessor('ikResults_states.sto')) track.set_states_global_tracking_weight(5) ##### TODO: add more specific weights for different state coordinates like in RRA #This setting allows extra data columns contained in the states #reference that don't correspond to model coordinates. track.set_allow_unused_references(True) # Since there is only coordinate position data the states references, this # setting is enabled to fill in the missing coordinate speed data using # the derivative of splined position data. track.set_track_reference_position_derivatives(True) # Initial time, final time, and mesh interval. track.set_initial_time(osim.Storage('ikResults_states.sto').getFirstTime()) track.set_final_time(osim.Storage('ikResults_states.sto').getLastTime()) track.set_mesh_interval(0.08) #Instead of calling solve(), call initialize() to receive a pre-configured #MocoStudy object based on the settings above. Use this to customize the #problem beyond the MocoTrack interface. study = track.initialize() #Get a reference to the MocoControlCost that is added to every MocoTrack #problem by default. problem = study.updProblem() effort = osim.MocoControlGoal.safeDownCast(problem.updGoal('control_effort')) effort.setWeight(1) # # Put a large weight on the pelvis CoordinateActuators, which act as the # # residual, or 'hand-of-god', forces which we would like to keep as small # # as possible. # model = modelProcessor.process() # model.initSystem() # forceSet = model.getForceSet() # for ii in range(forceSet.getSize()): # forcePath = forceSet.get(ii).getAbsolutePathString() # if 'pelvis' in str(forcePath): # effort.setWeightForControl(forcePath, 10) #Get solver and set the mesh interval solver = study.initCasADiSolver() #50 mesh intervals for half gait cycle recommended, keep smaller for now #19 will produce the same as inverse solution above # solver.set_num_mesh_intervals(19) #Set solver parameters solver.set_optim_constraint_tolerance(1e-3) solver.set_optim_convergence_tolerance(1e-3) # Solve and visualize. solution = study.solve() #Return the solution as an object that we can use return solution