import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if (ot.ConditionalDistribution().__class__.__name__ == 'ComposedDistribution'):
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif (ot.ConditionalDistribution().__class__.__name__ ==
      'CumulativeDistributionNetwork'):
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
elif (ot.ConditionalDistribution().__class__.__name__ == 'Histogram'):
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
else:
    distribution = ot.ConditionalDistribution()
dimension = distribution.getDimension()
if dimension <= 2:
    if distribution.getDimension() == 1:
        distribution.setDescription(['$x$'])
        pdf_graph = distribution.drawPDF()
        cdf_graph = distribution.drawCDF()
        fig = plt.figure(figsize=(10, 4))
        plt.suptitle(str(distribution))
        pdf_axis = fig.add_subplot(121)
        cdf_axis = fig.add_subplot(122)
        View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
        View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
    else:
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.ConditionalDistribution().__class__.__name__ == 'ComposedDistribution':
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif ot.ConditionalDistribution(
).__class__.__name__ == 'CumulativeDistributionNetwork':
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
elif ot.ConditionalDistribution().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
else:
    distribution = ot.ConditionalDistribution()
dimension = distribution.getDimension()
if dimension == 1:
    distribution.setDescription(['$x$'])
    pdf_graph = distribution.drawPDF()
    cdf_graph = distribution.drawCDF()
    fig = plt.figure(figsize=(10, 4))
    plt.suptitle(str(distribution))
    pdf_axis = fig.add_subplot(121)
    cdf_axis = fig.add_subplot(122)
    View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
    View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
elif dimension == 2:
    distribution.setDescription(['$x_1$', '$x_2$'])
コード例 #3
0
    # choose the initial state within the prior
    initialState = prior.getRealization()

    # conditional distribution
    conditional = ot.Normal()

    # create a metropolis-hastings sampler
    sampler = ot.RandomWalkMetropolisHastings(
        prior, conditional, data, initialState, proposalColl)
    sampler.setVerbose(True)
    sampler.setThinning(2)
    sampler.setBurnIn(500)
    sampler.setCalibrationStrategyPerComponent(calibrationColl)
    realization = sampler.getRealization()

    sigmay = ot.ConditionalDistribution(
        ot.Normal(), prior).getStandardDeviation()[0]
    w = size * sigma0 ** 2. / (size * sigma0 ** 2. + sigmay ** 2.0)

    print("prior variance= %.12g" % (sigma0 ** 2.))
    print("  realization=", realization)

    print("  w= %.12g" % w)

    # the posterior for mu is analytical
    print("  expected posterior ~N( %.12g" % (w * data.computeMean()
                                              [0] + (1. - w) * mu0), ",  %.12g" % ((w * sigmay ** 2.0 / size) ** 0.5), ")")

    # try to generate a sample
    sample = sampler.getSample(50)

    print("  obtained posterior ~N( %.12g" % sample.computeMean()[
コード例 #4
0
atoms = [ot.Uniform(0.0, 1.0), ot.Uniform(1.0, 2.0)]
conditioningDistributionCollection.append(ot.ComposedDistribution(atoms))
# Second conditioning distribution: discrete/continuous
atoms = [ot.Binomial(3, 0.5), ot.Uniform(1.0, 2.0)]
#conditioningDistributionCollection.append(ot.ComposedDistribution(atoms))
# Third conditioning distribution: dirac/continuous
atoms = [ot.Dirac(0.0), ot.Uniform(1.0, 2.0)]
conditioningDistributionCollection.append(ot.ComposedDistribution(atoms))


for conditioning in conditioningDistributionCollection:
    print("conditioning distribution=", conditioning)
    observationsDistribution = ot.Distribution(conditionedDistribution)
    observationsDistribution.setParameter(conditioning.getMean())
    observations = observationsDistribution.getSample(observationsSize)
    distribution  = ot.PosteriorDistribution(ot.ConditionalDistribution(conditionedDistribution, conditioning), observations)
    dim = distribution.getDimension()
    print("Distribution ", distribution)
    print("Distribution ", distribution)
    print("range=", distribution.getRange())
    mean = distribution.getMean()
    print("Mean ", mean)
    print("Covariance ", distribution.getCovariance())
    # Is this distribution an elliptical distribution?
    print("Elliptical distribution= ", distribution.isElliptical())

    # Has this distribution an elliptical copula?
    print("Elliptical copula= ", distribution.hasEllipticalCopula())

    # Has this distribution an independent copula?
    print("Independent copula= ", distribution.hasIndependentCopula())
コード例 #5
0
import openturns.viewer as viewer
from matplotlib import pylab as plt

# %%
# create the Y distribution
YDist = ot.Uniform(-1.0, 1.0)

# %%
# create Theta=f(y)
f = ot.SymbolicFunction(['y'], ['y', '1+y^2'])

# %%
# create the X|Theta distribution
XgivenThetaDist = ot.Uniform()

# %%
# create the distribution
XDist = ot.ConditionalDistribution(XgivenThetaDist, YDist, f)
XDist.setDescription(['X|Theta=f(y)'])
XDist

# %%
# Get a sample
XDist.getSample(5)

# %%
# draw PDF
graph = XDist.drawPDF()
view = viewer.View(graph)
plt.show()
コード例 #6
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.ConditionalDistribution().__class__.__name__ == 'Bernoulli':
    distribution = ot.Bernoulli(0.7)
elif ot.ConditionalDistribution().__class__.__name__ == 'Binomial':
    distribution = ot.Binomial(5, 0.2)
elif ot.ConditionalDistribution().__class__.__name__ == 'ComposedDistribution':
    copula = ot.IndependentCopula(2)
    marginals = [ot.Uniform(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, copula)
elif ot.ConditionalDistribution(
).__class__.__name__ == 'CumulativeDistributionNetwork':
    coll = [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])]
    distribution = ot.CumulativeDistributionNetwork(
        coll, ot.BipartiteGraph([[0, 1], [0, 1]]))
elif ot.ConditionalDistribution().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
elif ot.ConditionalDistribution().__class__.__name__ == 'KernelMixture':
    kernel = ot.Uniform()
    sample = ot.Normal().getSample(5)
    bandwith = [1.0]
    distribution = ot.KernelMixture(kernel, bandwith, sample)
elif ot.ConditionalDistribution().__class__.__name__ == 'MaximumDistribution':
    coll = [
        ot.Uniform(2.5, 3.5),
        ot.LogUniform(1.0, 1.2),
        ot.Triangular(2.0, 3.0, 4.0)
    ]
    distribution = ot.MaximumDistribution(coll)
elif ot.ConditionalDistribution().__class__.__name__ == 'Multinomial':
コード例 #7
0
atoms = [ot.Uniform(0.0, 1.0), ot.Uniform(1.0, 2.0)]
conditioningDistributionCollection.append(ot.ComposedDistribution(atoms))
# Second conditioning distribution: discrete/continuous
atoms = [ot.Binomial(3, 0.5), ot.Uniform(1.0, 2.0)]
# conditioningDistributionCollection.append(ot.ComposedDistribution(atoms))
# Third conditioning distribution: dirac/continuous
atoms = [ot.Dirac(0.0), ot.Uniform(1.0, 2.0)]
conditioningDistributionCollection.append(ot.ComposedDistribution(atoms))

for conditioning in conditioningDistributionCollection:
    print("conditioning distribution=", conditioning)
    observationsDistribution = ot.Distribution(conditionedDistribution)
    observationsDistribution.setParameter(conditioning.getMean())
    observations = observationsDistribution.getSample(observationsSize)
    distribution = ot.PosteriorDistribution(
        ot.ConditionalDistribution(conditionedDistribution, conditioning),
        observations)
    dim = distribution.getDimension()
    print("Distribution ", distribution)
    print("Distribution ", distribution)
    print("range=", distribution.getRange())
    mean = distribution.getMean()
    print("Mean ", mean)
    print("Covariance ", distribution.getCovariance())
    # Is this distribution an elliptical distribution?
    print("Elliptical distribution= ", distribution.isElliptical())

    # Has this distribution an elliptical copula?
    print("Elliptical copula= ", distribution.hasEllipticalCopula())

    # Has this distribution an independent copula?