コード例 #1
0
    def test_SquaredExponential(self):
        # With 2 principal components
        setup_HDRenv()
        # Test with no outlier in the band
        xmin = 0.0
        step = 0.1
        n = 100
        timeGrid = ot.RegularGrid(xmin, step, n + 1)
        amplitude = [7.0]
        scale = [1.5]
        covarianceModel = ot.SquaredExponential(scale, amplitude)
        process = ot.GaussianProcess(covarianceModel, timeGrid)
        nbTrajectories = 50
        processSample = process.getSample(nbTrajectories)
        # KL decomposition
        reduction = othdr.KarhunenLoeveDimensionReductionAlgorithm(
            processSample, 2)
        reduction.run()
        reducedComponents = reduction.getReducedComponents()

        # Distribution fit in reduced space
        ks = ot.KernelSmoothing()
        reducedDistribution = ks.build(reducedComponents)
        hdr = othdr.ProcessHighDensityRegionAlgorithm(processSample,
                                                      reducedComponents,
                                                      reducedDistribution,
                                                      [0.95, 0.5])
        hdr.run()
        graph = hdr.draw()
        otv.View(graph)
コード例 #2
0
 def test_NonZeroMean(self):
     # Create the KL result
     numberOfVertices = 10
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     covariance = ot.SquaredExponential()
     zeroProcess = ot.GaussianProcess(covariance, mesh)
     # Define a trend function
     f = ot.SymbolicFunction(["t"], ["30 * t"])
     fTrend = ot.TrendTransform(f, mesh)
     # Add it to the process
     process = ot.CompositeProcess(fTrend, zeroProcess)
     # Sample
     sampleSize = 100
     processSample = process.getSample(sampleSize)
     threshold = 0.0
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create the KL reduction
     meanField = processSample.computeMean()
     klreduce = ot.KarhunenLoeveReduction(klresult)
     # Generate a trajectory and reduce it
     field = process.getRealization()
     values = field.getValues()
     reducedValues = klreduce(values)
     ott.assert_almost_equal(values, reducedValues)
コード例 #3
0
 def test_KarhunenLoeveValidationMultidimensional(self):
     # Create the KL result
     numberOfVertices = 20
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     outputDimension = 2
     univariateCovariance = ot.SquaredExponential()
     covarianceCollection = [univariateCovariance] * outputDimension
     multivariateCovariance = ot.TensorizedCovarianceModel(
         covarianceCollection)
     process = ot.GaussianProcess(multivariateCovariance, mesh)
     sampleSize = 100
     sampleSize = 10
     processSample = process.getSample(sampleSize)
     threshold = 1.0e-7
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create the validation
     validation = ot.KarhunenLoeveValidation(processSample, klresult)
     # Check residuals
     residualProcessSample = validation.computeResidual()
     assert (type(residualProcessSample) is ot.ProcessSample)
     # Check standard deviation
     residualSigmaField = validation.computeResidualStandardDeviation()
     zeroSample = ot.Sample(numberOfVertices, outputDimension)
     ott.assert_almost_equal(residualSigmaField, zeroSample)
     # Check graph
     graph = validation.drawValidation()
     if False:
         from openturns.viewer import View
         View(graph).save('validation2.png')
コード例 #4
0
def plotCovarianceModel(myCovarianceModel, myTimeGrid, nbTrajectories):
    '''Plots the given number of trajectories with given covariance model.'''
    process = ot.GaussianProcess(myCovarianceModel, myTimeGrid)
    sample = process.getSample(nbTrajectories)
    graph = sample.drawMarginal(0)
    graph.setTitle("")
    return graph
コード例 #5
0
 def test_KarhunenLoeveValidation(self):
     # Create the KL result
     numberOfVertices = 20
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     covariance = ot.SquaredExponential()
     process = ot.GaussianProcess(covariance, mesh)
     sampleSize = 100
     processSample = process.getSample(sampleSize)
     threshold = 1.0e-7
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create validation
     validation = ot.KarhunenLoeveValidation(processSample, klresult)
     # Check residuals
     residualProcessSample = validation.computeResidual()
     assert (type(residualProcessSample) is ot.ProcessSample)
     # Check standard deviation
     residualSigmaField = validation.computeResidualStandardDeviation()
     exact = ot.Sample(numberOfVertices, 1)
     #ott.assert_almost_equal(residualSigmaField, exact)
     # Check mean
     residualMean = validation.computeResidualMean()
     exact = ot.Sample(numberOfVertices, 1)
     #ott.assert_almost_equal(residualMean, exact)
     # Check graph
     graph0 = validation.drawValidation()
     graph1 = residualProcessSample.drawMarginal(0)
     graph2 = residualMean.drawMarginal(0)
     graph3 = residualSigmaField.drawMarginal(0)
     graph4 = validation.drawObservationWeight(0)
     graph5 = validation.drawObservationQuality()
     if 0:
         from openturns.viewer import View
         View(graph0).save('validation1.png')
         View(graph1).save('validation1-residual.png')
         View(graph2).save('validation1-residual-mean.png')
         View(graph3).save('validation1-residual-stddev.png')
         View(graph4).save('validation1-indiv-weight.png')
         View(graph5).save('validation1-indiv-quality.png')
コード例 #6
0
 def test_ZeroMean(self):
     # Create the KL result
     numberOfVertices = 10
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     covariance = ot.SquaredExponential()
     process = ot.GaussianProcess(covariance, mesh)
     sampleSize = 10
     processSample = process.getSample(sampleSize)
     threshold = 0.0
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create the KL reduction
     meanField = processSample.computeMean()
     klreduce = ot.KarhunenLoeveReduction(klresult)
     # Generate a trajectory and reduce it
     field = process.getRealization()
     values = field.getValues()
     reducedValues = klreduce(values)
     ott.assert_almost_equal(values, reducedValues)
コード例 #7
0
 def test_trend(self):
     N = 100
     M = 1000
     P = 10
     mean = ot.SymbolicFunction("x", "sign(x)")
     cov = ot.SquaredExponential([1.0], [0.1])
     mesh = ot.IntervalMesher([N]).build(ot.Interval(-2.0, 2.0))
     process = ot.GaussianProcess(ot.TrendTransform(mean, mesh), cov, mesh)
     sample = process.getSample(M)
     algo = ot.KarhunenLoeveSVDAlgorithm(sample, 1e-6)
     algo.run()
     result = algo.getResult()
     trend = ot.TrendTransform(
         ot.P1LagrangeEvaluation(sample.computeMean()), mesh)
     sample2 = process.getSample(P)
     sample2.setName('reduction of sign(x) w/o trend')
     reduced1 = ot.KarhunenLoeveReduction(result)(sample2)
     reduced2 = ot.KarhunenLoeveReduction(result, trend)(sample2)
     g = sample2.drawMarginal(0)
     g.setColors(["red"])
     g1 = reduced1.drawMarginal(0)
     g1.setColors(["blue"])
     drs = g1.getDrawables()
     for i, d in enumerate(drs):
         d.setLineStyle("dashed")
         drs[i] = d
     g1.setDrawables(drs)
     g.add(g1)
     g2 = reduced2.drawMarginal(0)
     g2.setColors(["green"])
     drs = g2.getDrawables()
     for i, d in enumerate(drs):
         d.setLineStyle("dotted")
         drs[i] = d
     g2.setDrawables(drs)
     g.add(g2)
     if 0:
         from openturns.viewer import View
         View(g).save('reduction.png')
コード例 #8
0
# %%
# Input model
print("Create the input process")
# Domain bound
a = 1
# Reference correlation length
b = 0.5
# Number of vertices in the mesh
N = 100
# Bandwidth of the smoothers
h = 0.05

mesh = ot.IntervalMesher([N - 1]).build(ot.Interval(-a, a))
covariance_X = ot.AbsoluteExponential([b])
process_X = ot.GaussianProcess(covariance_X, mesh)


# %%
# for some pretty graphs
def drawKL(scaledKL, KLev, mesh, title="Scaled KL modes"):
    graph_modes = scaledKL.drawMarginal()
    graph_modes.setTitle(title + " scaled KL modes")
    graph_modes.setXTitle('$x$')
    graph_modes.setYTitle(r'$\sqrt{\lambda_i}\phi_i$')
    data_ev = [[i, KLev[i]] for i in range(scaledKL.getSize())]
    graph_ev = ot.Graph()
    graph_ev.add(ot.Curve(data_ev))
    graph_ev.add(ot.Cloud(data_ev))
    graph_ev.setTitle(title + " KL eigenvalues")
    graph_ev.setXTitle('$k$')
コード例 #9
0
# which mesh is of box of dimension 2

myIndices = ot.Indices([80, 40])
myMesher = ot.IntervalMesher(myIndices)
lowerBound = [0., 0.]
upperBound = [2., 1.]
myInterval = ot.Interval(lowerBound, upperBound)
myMesh = myMesher.build(myInterval)

# Define a bidimensional temporal Gaussian process on the mesh
# with independent components
amplitude = [1.0, 1.0]
scale = [0.2, 0.3]
myCovModel = ot.ExponentialModel(scale, amplitude)

myXtProcess_temp = ot.GaussianProcess(myCovModel, myMesh)

# Non linear transformation of myXtProcess
# to get a positive process
g2 = ot.SymbolicFunction(['x1', 'x2'], ['x1^2', 'abs(x2)'])
myDynTransform = ot.ValueFunction(g2, 2)
myXtProcess = ot.CompositeProcess(myDynTransform, myXtProcess_temp)

# Create the  image Y
myYtProcess = ot.CompositeProcess(myDynFunc, myXtProcess)

# Get the antecedent : myXtProcess
print('My antecedent process = ', myYtProcess.getAntecedent())

# Get the dynamical function
# which performs the transformation
コード例 #10
0
# Set Numerical precision to 4
ot.PlatformInfo.SetNumericalPrecision(4)
sampleSize = 40
inputDimension = 1

# Create the function to estimate
model = ot.SymbolicFunction(["x0"], ["x0"])

X = ot.Sample(sampleSize, inputDimension)
for i in range(sampleSize):
    X[i, 0] = 3.0 + (8.0 * i) / sampleSize
Y = model(X)

# Add a small noise to data
Y += ot.GaussianProcess(ot.AbsoluteExponential([0.1], [0.2]),
                        ot.Mesh(X)).getRealization().getValues()

basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.DiracCovarianceModel(inputDimension)
print("===================================================\n")
algo = ot.GeneralLinearModelAlgorithm(X, Y, covarianceModel, basis)
algo.run()

result = algo.getResult()
print("\ncovariance (dirac, optimized)=", result.getCovarianceModel())
print("trend (dirac, optimized)=", result.getTrendCoefficients())
print("===================================================\n")

# Now without estimating covariance parameters
basis = ot.LinearBasisFactory(inputDimension).build()
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)

# %%
# Create a time grid
tMin = 0.0
timeStep = 0.1
n = 100
tgrid = ot.RegularGrid(tMin, timeStep, n)

# %%
# Create a normal process
amplitude = [5.0]
scale = [3.0]
model = ot.ExponentialModel(scale, amplitude)
process = ot.GaussianProcess(model, tgrid)

# %%
# Create the 1-d domain A: [2.,5.]
lowerBound = [2.0]
upperBound = [5.0]
domain = ot.Interval(lowerBound, upperBound)

# %%
# Create an event from a Process and a Domain
event = ot.ProcessEvent(process, domain)

# %%
# Create the Monte-Carlo algorithm
montecarlo = ot.ProbabilitySimulationAlgorithm(event)
コード例 #12
0
#

# %%
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)

# %%
# Create a Gaussian process
numberOfVertices = 20
interval = ot.Interval(-1.0, 1.0)
mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
covariance = ot.SquaredExponential()
process = ot.GaussianProcess(covariance, mesh)

# %%
# decompose it using KL-SVD
sampleSize = 100
processSample = process.getSample(sampleSize)
threshold = 1.0e-7
algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
algo.run()
klresult = algo.getResult()

# %%
# Instanciate the validation service
validation = ot.KarhunenLoeveValidation(processSample, klresult)

# %%
コード例 #13
0
    def _exec(self, X):
        f = ot.Function(
            ot.PiecewiseLinearEvaluation(
                [x[0] for x in self.getInputMesh().getVertices()], X))
        outputValues = ot.Sample(0, 1)
        for t in self.getOutputMesh().getVertices():
            kernel = ot.Normal(t[0], 0.05)

            def pdf(X):
                return [kernel.computePDF(X)]

            weight = ot.Function(ot.PythonFunction(1, 1, pdf))
            outputValues.add(
                self.algo_.integrate(weight * f, kernel.getRange()))
        return outputValues


N = 5
X = ot.GaussianProcess(ot.GeneralizedExponential([0.1], 1.0), mesh)
f = ot.FieldFunction(GaussianConvolution())
Y = ot.CompositeProcess(f, X)
x_graph = X.getSample(N).drawMarginal(0)
y_graph = Y.getSample(N).drawMarginal(0)
fig = plt.figure(figsize=(10, 4))
plt.suptitle("Composite process")
x_axis = fig.add_subplot(121)
y_axis = fig.add_subplot(122)
View(x_graph, figure=fig, axes=[x_axis], add_legend=False)
View(y_graph, figure=fig, axes=[y_axis], add_legend=False)
コード例 #14
0
amplitude = [1.0, 2.0, 3.0]

# %%
# We define a spatial correlation :
spatialCorrelation = ot.CorrelationMatrix(3)
spatialCorrelation[0, 1] = 0.8
spatialCorrelation[0, 2] = 0.6
spatialCorrelation[1, 2] = 0.1

# %%
# The covariance model is now created with :
myCovarianceModel = ot.ExponentialModel(scale, amplitude, spatialCorrelation)

# %%
# Eventually, the process is  built with :
process = ot.GaussianProcess(myCovarianceModel, time_grid)

# %%
# The dimension d of the process may be retrieved by
dim = process.getOutputDimension()
print("Dimension : %d" % dim)

# %%
# The underlying mesh of the process is obtained with the `getMesh` method :
mesh = process.getMesh()

# %%
# We have access to peculiar data of the mesh such as the corners :
minMesh = mesh.getVertices().getMin()[0]
maxMesh = mesh.getVertices().getMax()[0]
コード例 #15
0
#

# %%
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import math as m
ot.Log.Show(ot.Log.NONE)

# %%
# Create a process
grid = ot.RegularGrid(0.0, 0.1, 10)
amplitude = [5.0]
scale = [0.2]
covModel = ot.ExponentialModel(scale, amplitude)
X = ot.GaussianProcess(covModel, grid)

# %%
# Draw a sample
sample = X.getSample(6)
sample.setName('X')
graph = sample.drawMarginal(0)
view = viewer.View(graph)

# %%
# Define a trend function
f = ot.SymbolicFunction(['t'], ['30*t'])
fTrend = ot.TrendTransform(f, grid)

# %%
# Add it to the process
tmax = myMesh.getEnd()

# Create the collection of HermitianMatrix
covariance = ot.CovarianceMatrix(N)
for k in range(N):
    s = myMesh.getValue(k)
    for l in range(k + 1):
        t = myMesh.getValue(l)
        covariance[k, l] = C(s, t)

# Create the covariance model
myCovarianceModel = ot.UserDefinedCovarianceModel(myMesh, covariance)

# Create the non stationary Gaussian process with
# that covariance model
myProcess = ot.GaussianProcess(myCovarianceModel, myMesh)

# Create a  sample of fields
size = 10**4
myFieldSample = myProcess.getSample(size)

# Build a covariance model factory
myFactory = ot.NonStationaryCovarianceModelFactory()

# Estimation on a the ProcessSample
myEstimatedModel = myFactory.build(myFieldSample)

# Define the python function associated to myCovarianceModel


def covMod(X):
コード例 #17
0
# Sample [int64] indexing
s0 = ot.Sample(5, 3)
idx = np.array([1, 3, 4])
print('sample[[int64]]:', s0[idx])
s0[idx] = ot.Normal(3).getSample(3)
print('sample[[int64]]=Sample:', s0)

# generic int64 indexing
s0 = ot.Description(5, 'aa')
idx = np.int64(2)
print('Description[int64]:', s0[idx])
s0[idx] = 'zou'
print('Description[int64]=str', s0[idx])

# generic [int64] indexing
s0 = ot.Description(5, 'aa')
idx = np.array([1, 3, 4])
print('Description[[int64]]:', s0[idx])
s0[idx] = ['zou'] * 3
print('Description[[int64]]=str', s0[idx])

# Field int64 indexing
mesher = ot.IntervalMesher([10, 5])
mesh = mesher.build(ot.Interval([0.0, 0.0], [2.0, 1.0]))
process = ot.GaussianProcess(ot.ExponentialModel([0.2] * 2, [1.0]), mesh)
field = process.getRealization()
idx = np.int64(2)
print('Field[int64]', field[idx])
field[idx] = [6.0]
print('Field[int64]=Point', field[idx])
コード例 #18
0
amplitude = [1.0] * outputDimension
# Scale values
scale = [1.0] * inputDimension

tmin = 0.0
step = 0.1
n = 11

myTimeGrid = ot.RegularGrid(tmin, step, n)
size = 25

# Second order model with parameters
myCovModel = ot.ExponentialModel(scale, amplitude)
print("myCovModel = ", myCovModel)

myProcess1 = ot.GaussianProcess(myCovModel, myTimeGrid)
print("myProcess1 = ", myProcess1)
print("is stationary? ", myProcess1.isStationary())
myProcess1.setSamplingMethod(ot.GaussianProcess.CHOLESKY)
print("mean over ", size, " realizations = ",
      myProcess1.getSample(size).computeMean())
myProcess1.setSamplingMethod(ot.GaussianProcess.GIBBS)
print("mean over ", size, " realizations = ",
      myProcess1.getSample(size).computeMean())

# With constant trend
trend = ot.TrendTransform(ot.SymbolicFunction("t", "4.0"), myTimeGrid)
myProcess2 = ot.GaussianProcess(trend, myCovModel, myTimeGrid)
myProcess2.setSamplingMethod(ot.GaussianProcess.GIBBS)
print("myProcess2 = ", myProcess2)
print("is stationary? ", myProcess2.isStationary())
コード例 #19
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create a bivariate Gaussian process
myMesh = ot.IntervalMesher([39, 39]).build(ot.Interval([0.0] * 2, [1.0] * 2))
myCov = ot.GeneralizedExponential(2 * [0.1], 1.3)
myProcess = ot.GaussianProcess(myCov, myMesh)

myField = myProcess.getRealization()

graph = myField.drawMarginal(0, False)

fig = plt.figure(figsize=(8, 4))
plt.suptitle("A field")
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=True)
コード例 #20
0
ot.Log.Show(ot.Log.NONE)

# %%
# define a covariance model
defaultDimension = 1
# Amplitude values
amplitude = [1.0] * defaultDimension
# Scale values
scale = [1.0] * defaultDimension
# Covariance model
myModel = ot.AbsoluteExponential(scale, amplitude)

# %%
# define a mesh
tmin = 0.0
step = 0.1
n = 11
myTimeGrid = ot.RegularGrid(tmin, step, n)

# %%
# create the process
process = ot.GaussianProcess(myModel, myTimeGrid)
print(process)

# %%
# draw a sample
sample = process.getSample(6)
graph = sample.drawMarginal(0)
view = viewer.View(graph)
plt.show()
コード例 #21
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create a process on a regular grid
myGrid = ot.RegularGrid(0.0, 0.1, 100)

amplitude = [5.0]
scale = [0.2]
myCovModel = ot.ExponentialModel(scale, amplitude)
myXProcess = ot.GaussianProcess(myCovModel, myGrid)

# Create a trend
fTrend = ot.SymbolicFunction(["t"], ["1+2*t+t^2"])
fTemp = ot.TrendTransform(fTrend, myGrid)

# Add the trend to the process and get a field
myYProcess = ot.CompositeProcess(fTemp, myXProcess)
myYField = myYProcess.getRealization()

# Create a TrendFactory
myBasisSequenceFactory = ot.LARS()
myFittingAlgorithm = ot.KFold()
func1 = ot.SymbolicFunction(["t"], ["1"])
func2 = ot.SymbolicFunction(["t"], ["t"])
func3 = ot.SymbolicFunction(["t"], ["t^2"])
myBasis = ot.Basis([func1, func2, func3])

myTrendFactory = ot.TrendFactory(myBasisSequenceFactory, myFittingAlgorithm)

# Estimate the trend
コード例 #22
0
# %%
# Define a 2-d mesh
indices = ot.Indices([40, 20])
mesher = ot.IntervalMesher(indices)
lowerBound = [0., 0.]
upperBound = [2., 1.]
interval = ot.Interval(lowerBound, upperBound)
mesh = mesher.build(interval)

# %%
# Create the covariance model
amplitude = [1.0, 2.0, 3.0]
scale = [4.0, 5.0]
spatialCorrelation = ot.CorrelationMatrix(3)
spatialCorrelation[0, 1] = 0.8
spatialCorrelation[0, 2] = 0.6
spatialCorrelation[1, 2] = 0.1
covmodel = ot.ExponentialModel(scale, amplitude, spatialCorrelation)

# Create a normal process
process = ot.GaussianProcess(covmodel, mesh)

# %%
# Create a domain A in R^3: [0.8; 1.2]*[1.5; 1.6]*[0.5; 0.7]
lowerBound = [0.8, 1.5, 0.5]
upperBound = [1.2, 1.6, 0.7]
domain = ot.Interval(lowerBound, upperBound)

# Create the event
event = ot.ProcessEvent(process, domain)
コード例 #23
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
from math import sqrt

mesh = ot.IntervalMesher([128]).build(ot.Interval(-1.0, 1.0))
threshold = 0.001
model = ot.AbsoluteExponential([1.0])
sample = ot.GaussianProcess(model, mesh).getSample(100)
algo = ot.KarhunenLoeveSVDAlgorithm(sample, threshold)
algo.run()
ev = algo.getResult().getEigenValues()
modes = algo.getResult().getScaledModesAsProcessSample()
g = modes.drawMarginal(0)
g.setXTitle("$t$")
g.setYTitle("$\sqrt{\lambda_n}\phi_n$")

fig = plt.figure(figsize=(6, 4))
plt.suptitle("SVD approx. of KL expansion for $C(s,t)=e^{-|s-t|}$")
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(g, figure=fig, axes=[axis], add_legend=False)
コード例 #24
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

mesh = ot.IntervalMesher([9]).build(ot.Interval(-1.0, 1.0))
cov1D = ot.AbsoluteExponential([1.0])
algo = ot.KarhunenLoeveP1Algorithm(mesh, cov1D, 0.0)
algo.run()
result = algo.getResult()
lambd = result.getEigenvalues()
KLModes = result.getModesAsProcessSample()
print("KL modes=", KLModes)
print("KL eigenvalues=", lambd)
process = ot.GaussianProcess(cov1D, KLModes.getMesh())
coefficients = result.project(process.getSample(10))
print("KL coefficients=", coefficients)
KLFunctions = result.getModes()
print("KL functions=", KLFunctions)
print("KL lift=", result.lift(coefficients[0]))
print("KL lift as field=", result.liftAsField(coefficients[0]))

R = ot.CorrelationMatrix(2)
R[0, 1] = 0.5
scale = [1.0]
amplitude = [1.0, 2.0]
cov2D = ot.ExponentialModel(scale, amplitude, R)
algo = ot.KarhunenLoeveP1Algorithm(mesh, cov2D, 0.0)
algo.run()
result = algo.getResult()
lambd = result.getEigenvalues()
コード例 #25
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.WhiteNoise().__class__.__name__ == 'Process':
    # default to Gaussian for the interface class
    process = ot.GaussianProcess()
elif ot.WhiteNoise().__class__.__name__ == 'DiscreteMarkovChain':
    process = ot.WhiteNoise()
    process.setTransitionMatrix(ot.SquareMatrix([[0.0,0.5,0.5],[0.7,0.0,0.3],[0.8,0.0,0.2]]))
    origin = 0
    process.setOrigin(origin)
else:
    process = ot.WhiteNoise()
process.setTimeGrid(ot.RegularGrid(0.0, 0.02, 50))
process.setDescription(['$x$'])
sample = process.getSample(6)
sample_graph = sample.drawMarginal(0)
sample_graph.setTitle(str(process))

fig = plt.figure(figsize=(10, 4))
sample_axis = fig.add_subplot(111)
View(sample_graph, figure=fig, axes=[sample_axis], add_legend=False)
コード例 #26
0
amplitude = [1.0] * dimension
scale = [1] * dimension
covarianceModel = ot.GeneralizedExponential(scale, amplitude, 2)

# %%
# We define the time grid on which we want to sample the Gaussian process.

# %%
tmin = 0.0
step = 0.01
n = 10001
timeGrid = ot.RegularGrid(tmin, step, n)

# %%
# Finally we define the Gaussian process.
process = ot.GaussianProcess(covarianceModel, timeGrid)
print(process)

# %%
# Basics on the HMatrix algebra
# -----------------------------
#
# The `HMatrix` framework uses efficient linear algebra techniques to speed-up the
# (Cholesky) factorization of the covariance matrix.
# This method can be tuned with several parameters. We should concentrate on the easiest ones.

# %%
# We set the sampling method to `HMAT` (default is the classical/dense case).
process.setSamplingMethod(ot.GaussianProcess.HMAT)

# %%
コード例 #27
0
 domain = ot.Interval(-1.0, 1.0)
 basis = ot.OrthogonalProductPolynomialFactory([ot.LegendreFactory()])
 basisSize = 5
 experiment = ot.LHSExperiment(basis.getMeasure(), 100)
 mustScale = False
 threshold = 0.0001
 model = ot.AbsoluteExponential([1.0])
 algo = ot.KarhunenLoeveQuadratureAlgorithm(
     domain, model, experiment, basis, basisSize, mustScale, threshold)
 algo.run()
 result = algo.getResult()
 lambd = result.getEigenValues()
 KLModes = result.getModesAsProcessSample()
 print("KL modes=", KLModes)
 print("KL eigenvalues=", lambd)
 process = ot.GaussianProcess(model, KLModes.getMesh())
 sample = process.getSample(10)
 coefficients = result.project(sample)
 print("KL coefficients=", coefficients)
 KLFunctions = result.getModes()
 print("KL functions=", KLFunctions)
 print("KL lift=", result.lift(coefficients[0]))
 print("KL lift as field=", result.liftAsField(coefficients[0]))
 # Now using Legendre/Gauss quadrature
 marginalDegree = 5
 algo = ot.KarhunenLoeveQuadratureAlgorithm(
     domain, model, marginalDegree, threshold)
 algo.run()
 result = algo.getResult()
 lambd = result.getEigenValues()
 KLModes = result.getScaledModesAsProcessSample()
コード例 #28
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.TESTPREAMBLE()

mesh = ot.IntervalMesher([9]).build(ot.Interval(-1.0, 1.0))
# 1D mesh, 1D covariance, uniform weight, automatic centering, more samples
# than vertices
cov1D = ot.AbsoluteExponential([1.0])
sample = ot.GaussianProcess(cov1D, mesh).getSample(16)
algo = ot.KarhunenLoeveSVDAlgorithm(sample, 0.0)
algo.run()
result = algo.getResult()
lambd = result.getEigenvalues()
KLModes = result.getModesAsProcessSample()
print("KL modes=", KLModes)
print("KL eigenvalues=", lambd)
coefficients = result.project(sample)
print("KL coefficients=", coefficients)
KLFunctions = result.getModes()
print("KL functions=", KLFunctions)
print("KL lift=", result.lift(coefficients[0]))
print("KL lift as field=", result.liftAsField(coefficients[0]))
# 1D mesh, 1D covariance, uniform weight, automatic centering
sample = ot.GaussianProcess(cov1D, mesh).getSample(6)
algo = ot.KarhunenLoeveSVDAlgorithm(sample, 0.0)
algo.run()
result = algo.getResult()
lambd = result.getEigenvalues()
コード例 #29
0
# Define a bi dimensional mesh as a box
myIndices = ot.Indices([40, 20])
myMesher = ot.IntervalMesher(myIndices)
lowerBound = [0.0, 0.0]
upperBound = [2.0, 1.0]
myInterval = ot.Interval(lowerBound, upperBound)
myMesh = myMesher.build(myInterval)

# Define a scalar temporal Gaussian process on the mesh
# this process is stationary
# myXproc R^2 --> R
amplitude = [1.0]
scale = [0.2, 0.2]
myCovModel = ot.ExponentialModel(scale, amplitude)
myXproc = ot.GaussianProcess(myCovModel, myMesh)

# Transform myXproc to make its variance depend on the vertex (s,t)
# and to get a positive process
# thanks to the spatial function g
# myXtProcess R --> R
g = ot.SymbolicFunction(['x1'], ['exp(x1)'])
myDynTransform = ot.ValueFunction(g, 2)
myXtProcess = ot.CompositeProcess(myDynTransform, myXproc)

myField = myXtProcess.getRealization()
graphMarginal1 = ot.KernelSmoothing().build(myField.getValues()).drawPDF()
graphMarginal1.setTitle("")
graphMarginal1.setXTitle("X")
graphMarginal1.setLegendPosition("")
コード例 #30
0
# %%
import openturns as ot
from openturns.viewer import View

# %%
# First build a process to generate the input data.
# We assemble a 4-d process from functional and Gaussian processes.
T = 3.0
NT = 32
tg = ot.RegularGrid(0.0, T / NT, NT)
f1 = ot.SymbolicFunction(['t'], ['sin(t)'])
f2 = ot.SymbolicFunction(['t'], ['cos(t)^2'])
coeff1_dist = ot.Normal([1.0] * 2, [0.6] * 2, ot.CorrelationMatrix(2))
p1 = ot.FunctionalBasisProcess(coeff1_dist, ot.Basis([f1, f2]), tg)
p2 = ot.GaussianProcess(ot.SquaredExponential([1.0], [T / 4.0]), tg)
coeff3_dist = ot.ComposedDistribution([ot.Uniform(), ot.Normal()])
f1 = ot.SymbolicFunction(["t"], ["1", "0"])
f2 = ot.SymbolicFunction(["t"], ["0", "1"])
p3 = ot.FunctionalBasisProcess(coeff3_dist, ot.Basis([f1, f2]))
X = ot.AggregatedProcess([p1, p2, p3])
X.setMesh(tg)

# %%
# Draw some input trajectories from our process
ot.RandomGenerator.SetSeed(0)
x = X.getSample(10)
graph = x.drawMarginal(0)
graph.setTitle(f'{x.getSize()} input trajectories')
_ = View(graph)