コード例 #1
0
def plotKrigingPredictions(krigingMetamodel):
    '''
    Plot the predictions of a Kriging metamodel.
    '''
    # Create the mesh of the box [0., 1000.] * [0., 700.]
    myInterval = ot.Interval([0., 0.], [1000., 700.])

    # Define the number of intervals in each direction of the box
    nx = 20
    ny = 20
    myIndices = [nx - 1, ny - 1]
    myMesher = ot.IntervalMesher(myIndices)
    myMeshBox = myMesher.build(myInterval)

    # Predict
    vertices = myMeshBox.getVertices()
    predictions = krigingMetamodel(vertices)

    # Format for plot
    X = np.array(vertices[:, 0]).reshape((ny, nx))
    Y = np.array(vertices[:, 1]).reshape((ny, nx))
    predictions_array = np.array(predictions).reshape((ny, nx))

    # Plot
    plt.figure()
    plt.pcolormesh(X, Y, predictions_array, shading='auto')
    plt.colorbar()
    plt.show()
    return
コード例 #2
0
 def test_NonZeroMean(self):
     # Create the KL result
     numberOfVertices = 10
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     covariance = ot.SquaredExponential()
     zeroProcess = ot.GaussianProcess(covariance, mesh)
     # Define a trend function
     f = ot.SymbolicFunction(["t"], ["30 * t"])
     fTrend = ot.TrendTransform(f, mesh)
     # Add it to the process
     process = ot.CompositeProcess(fTrend, zeroProcess)
     # Sample
     sampleSize = 100
     processSample = process.getSample(sampleSize)
     threshold = 0.0
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create the KL reduction
     meanField = processSample.computeMean()
     klreduce = ot.KarhunenLoeveReduction(klresult)
     # Generate a trajectory and reduce it
     field = process.getRealization()
     values = field.getValues()
     reducedValues = klreduce(values)
     ott.assert_almost_equal(values, reducedValues)
コード例 #3
0
    def _buildMesh(self, grid_shape):
        """Builds a openturns mesh in the unit cube, based on a
        comprehesive list of grid coordinates as returned by the
        _getGridShape method.

        Arguments
        ---------
        grid_shape : comprehensive list
            all the grid coordinates, in the unit cube.

        Returns
        -------
        mesh : ot.Mesh
            openturns Mesh object
        """
        dimension = len(grid_shape)
        n_intervals = [int(grid_shape[i][2]) for i in range(dimension)]
        low_bounds = [grid_shape[i][0] for i in range(dimension)]
        lengths = [grid_shape[i][1] for i in range(dimension)]
        high_bounds = [low_bounds[i] + lengths[i] for i in range(dimension)]
        mesherObj = ot.IntervalMesher(n_intervals)
        grid_interval = ot.Interval(low_bounds, high_bounds)
        mesh = mesherObj.build(grid_interval)
        mesh.setName(str(dimension) + 'D_Grid')
        return mesh
コード例 #4
0
 def test_KarhunenLoeveValidationMultidimensional(self):
     # Create the KL result
     numberOfVertices = 20
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     outputDimension = 2
     univariateCovariance = ot.SquaredExponential()
     covarianceCollection = [univariateCovariance] * outputDimension
     multivariateCovariance = ot.TensorizedCovarianceModel(
         covarianceCollection)
     process = ot.GaussianProcess(multivariateCovariance, mesh)
     sampleSize = 100
     sampleSize = 10
     processSample = process.getSample(sampleSize)
     threshold = 1.0e-7
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create the validation
     validation = ot.KarhunenLoeveValidation(processSample, klresult)
     # Check residuals
     residualProcessSample = validation.computeResidual()
     assert (type(residualProcessSample) is ot.ProcessSample)
     # Check standard deviation
     residualSigmaField = validation.computeResidualStandardDeviation()
     zeroSample = ot.Sample(numberOfVertices, outputDimension)
     ott.assert_almost_equal(residualSigmaField, zeroSample)
     # Check graph
     graph = validation.drawValidation()
     if False:
         from openturns.viewer import View
         View(graph).save('validation2.png')
コード例 #5
0
    def __init__(self):
        self.dim = 4  # number of inputs
        self.outputDimension = 1  # dimension of the output

        self.tmin = 0.0  # Minimum time
        self.tmax = 12.0  # Maximum time
        self.gridsize = 100  # Number of time steps
        self.mesh = ot.IntervalMesher([self.gridsize - 1]).build(
            ot.Interval(self.tmin, self.tmax))
        self.vertices = self.mesh.getVertices()

        # Marginals
        self.distZ0 = ot.Uniform(100.0, 150.0)
        self.distV0 = ot.Normal(55.0, 10.0)
        self.distM = ot.Normal(80.0, 8.0)
        self.distC = ot.Uniform(0.0, 30.0)

        # Joint distribution
        self.distribution = ot.ComposedDistribution(
            [self.distZ0, self.distV0, self.distM, self.distC])

        # Exact solution
        self.alti = ot.PythonPointToFieldFunction(self.dim, self.mesh,
                                                  self.outputDimension,
                                                  AltiFunc)
コード例 #6
0
 def test_KarhunenLoeveValidation(self):
     # Create the KL result
     numberOfVertices = 20
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     covariance = ot.SquaredExponential()
     process = ot.GaussianProcess(covariance, mesh)
     sampleSize = 100
     processSample = process.getSample(sampleSize)
     threshold = 1.0e-7
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create validation
     validation = ot.KarhunenLoeveValidation(processSample, klresult)
     # Check residuals
     residualProcessSample = validation.computeResidual()
     assert (type(residualProcessSample) is ot.ProcessSample)
     # Check standard deviation
     residualSigmaField = validation.computeResidualStandardDeviation()
     exact = ot.Sample(numberOfVertices, 1)
     #ott.assert_almost_equal(residualSigmaField, exact)
     # Check mean
     residualMean = validation.computeResidualMean()
     exact = ot.Sample(numberOfVertices, 1)
     #ott.assert_almost_equal(residualMean, exact)
     # Check graph
     graph0 = validation.drawValidation()
     graph1 = residualProcessSample.drawMarginal(0)
     graph2 = residualMean.drawMarginal(0)
     graph3 = residualSigmaField.drawMarginal(0)
     graph4 = validation.drawObservationWeight(0)
     graph5 = validation.drawObservationQuality()
     if 0:
         from openturns.viewer import View
         View(graph0).save('validation1.png')
         View(graph1).save('validation1-residual.png')
         View(graph2).save('validation1-residual-mean.png')
         View(graph3).save('validation1-residual-stddev.png')
         View(graph4).save('validation1-indiv-weight.png')
         View(graph5).save('validation1-indiv-quality.png')
コード例 #7
0
 def test_ZeroMean(self):
     # Create the KL result
     numberOfVertices = 10
     interval = ot.Interval(-1.0, 1.0)
     mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
     covariance = ot.SquaredExponential()
     process = ot.GaussianProcess(covariance, mesh)
     sampleSize = 10
     processSample = process.getSample(sampleSize)
     threshold = 0.0
     algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
     algo.run()
     klresult = algo.getResult()
     # Create the KL reduction
     meanField = processSample.computeMean()
     klreduce = ot.KarhunenLoeveReduction(klresult)
     # Generate a trajectory and reduce it
     field = process.getRealization()
     values = field.getValues()
     reducedValues = klreduce(values)
     ott.assert_almost_equal(values, reducedValues)
コード例 #8
0
 def test_trend(self):
     N = 100
     M = 1000
     P = 10
     mean = ot.SymbolicFunction("x", "sign(x)")
     cov = ot.SquaredExponential([1.0], [0.1])
     mesh = ot.IntervalMesher([N]).build(ot.Interval(-2.0, 2.0))
     process = ot.GaussianProcess(ot.TrendTransform(mean, mesh), cov, mesh)
     sample = process.getSample(M)
     algo = ot.KarhunenLoeveSVDAlgorithm(sample, 1e-6)
     algo.run()
     result = algo.getResult()
     trend = ot.TrendTransform(
         ot.P1LagrangeEvaluation(sample.computeMean()), mesh)
     sample2 = process.getSample(P)
     sample2.setName('reduction of sign(x) w/o trend')
     reduced1 = ot.KarhunenLoeveReduction(result)(sample2)
     reduced2 = ot.KarhunenLoeveReduction(result, trend)(sample2)
     g = sample2.drawMarginal(0)
     g.setColors(["red"])
     g1 = reduced1.drawMarginal(0)
     g1.setColors(["blue"])
     drs = g1.getDrawables()
     for i, d in enumerate(drs):
         d.setLineStyle("dashed")
         drs[i] = d
     g1.setDrawables(drs)
     g.add(g1)
     g2 = reduced2.drawMarginal(0)
     g2.setColors(["green"])
     drs = g2.getDrawables()
     for i, d in enumerate(drs):
         d.setLineStyle("dotted")
         drs[i] = d
     g2.setDrawables(drs)
     g.add(g2)
     if 0:
         from openturns.viewer import View
         View(g).save('reduction.png')
コード例 #9
0
def readProcessSample(fname):
    """
    Return a ProcessSample from a text file.
    Assume the mesh is regular [0,1].
    """
    # Dataset
    data = np.loadtxt(fname)

    # Create the mesh
    n_nodes = data.shape[1]
    mesher = ot.IntervalMesher([n_nodes - 1])
    Interval = ot.Interval([0.0], [1.0])
    mesh = mesher.build(Interval)

    # Create the ProcessSample from the data
    n_fields = data.shape[0]
    dim_fields = 1
    processSample = ot.ProcessSample(mesh, n_fields, dim_fields)
    for i in range(n_fields):
        trajectory = ot.Sample([[x] for x in data[i, :]])
        processSample[i] = ot.Field(mesh, trajectory)
    return processSample
コード例 #10
0
def dummyFunction2Wrap(field_10x10, field_100x1, scalar_0):
    ## Function doing some operation on the 2 field and a scalar and returning a field
    outDim = 1
    NElem = [10]
    mesher = ot.IntervalMesher(NElem)
    lowerBound = [0]
    upperBound = [10]
    interval = ot.Interval(lowerBound, upperBound)
    mesh = mesher.build(interval)
    outField = ot.Field(mesh, [[0]] * mesh.getVerticesNumber())

    for i in range(10):
        for j in range(10):
            if field_10x10[i][0] * field_100x1[i + j][0] > scalar_0[0][0]:
                outField.setValueAtIndex(i, [
                    field_10x10[i][0] * field_100x1[(i + 1) * (j + 1) - 1][0] -
                    scalar_0[0][0]
                ])
            else:
                outField.setValueAtIndex(
                    i, [(field_10x10[j][0] - scalar_0[0][0]) /
                        field_100x1[(i + 1) * (j + 1) - 1][0]])

    return outField
コード例 #11
0
ファイル: Field.py プロジェクト: dubourg/openturns
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View


# Create a bivariate normal process
myMesh = ot.IntervalMesher([39, 39]).build(ot.Interval([0.0] * 2, [1.0] * 2))
myCov = ot.GeneralizedExponential(2, 0.1, 1.3)
myProcess = ot.TemporalNormalProcess(myCov, myMesh)

myField = myProcess.getRealization()

graph = myField.drawMarginal(0, False)

fig = plt.figure(figsize=(8, 4))
plt.suptitle("A field")
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=True)
        else:
            y = 2.0*m.sin(7.0*xx)
        return y

    XX_input = ot.Sample([[0.1, 0], [0.32, 0], [0.6, 0], [0.9, 0], [
                         0.07, 1], [0.1, 1], [0.4, 1], [0.5, 1], [0.85, 1]])
    y_output = ot.Sample(len(XX_input), 1)
    for i in range(len(XX_input)):
        y_output[i, 0] = fun_mixte(XX_input[i])

    def C(s, t):
        return m.exp(-4.0 * abs(s - t) / (1 + (s * s + t * t)))

    N = 32
    a = 4.0
    myMesh = ot.IntervalMesher([N]).build(ot.Interval(-a, a))

    myCovariance = ot.CovarianceMatrix(myMesh.getVerticesNumber())
    for k in range(myMesh.getVerticesNumber()):
        t = myMesh.getVertices()[k]
        for l in range(k + 1):
            s = myMesh.getVertices()[l]
            myCovariance[k, l] = C(s[0], t[0])

    covModel_discrete = ot.UserDefinedCovarianceModel(myMesh, myCovariance)
    f_ = ot.SymbolicFunction(["tau", "theta", "sigma"], [
                             "(tau!=0) * exp(-1/theta) * sigma * sigma +  (tau==0) * exp(0) * sigma * sigma"])
    rho = ot.ParametricFunction(f_, [1, 2], [0.2, 0.3])
    covModel_discrete = ot.StationaryFunctionalCovarianceModel([1.0], [
                                                               1.0], rho)
    covModel_continuous = ot.SquaredExponential([1.0], [1.0])
コード例 #13
0
"""
Aggregate processes
===================
"""
# %%
# In this example we are going to concatenate several processes that share the same mesh.

# %%
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)

# %%
# Create processes to aggregate
myMesher = ot.IntervalMesher([100, 10])
lowerbound = [0.0, 0.0]
upperBound = [2.0, 4.0]
myInterval = ot.Interval(lowerbound, upperBound)
myMesh = myMesher.build(myInterval)
myProcess1 = ot.WhiteNoise(ot.Normal(), myMesh)
myProcess2 = ot.WhiteNoise(ot.Triangular(), myMesh)

# %%
# Draw values of a realization of the 2nd process
marginal = ot.HistogramFactory().build(myProcess1.getRealization().getValues())
graph = marginal.drawPDF()
view = viewer.View(graph)

# %%
# Create an aggregated process
コード例 #14
0
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# A 1D->1D field
mesh = ot.IntervalMesher([10]).build(ot.Interval(-2.0, 2.0))
function = ot.SymbolicFunction("x", "x")
field = ot.Field(mesh, function(mesh.getVertices()))
graph = field.draw()
graph = field.drawMarginal(0, False)
graph = field.drawMarginal(0, True)
# A 2D->1D field
mesh = ot.IntervalMesher([10] * 2).build(ot.Interval([-2.0] * 2, [2.0] * 2))
function = ot.SymbolicFunction(["x0", "x1"], ["x0 - x1"])
field = ot.Field(mesh, function(mesh.getVertices()))
graph = field.draw()
graph = field.drawMarginal(0, False)
graph = field.drawMarginal(0, True)
# A 2D->2D field
function = ot.SymbolicFunction(["x0", "x1"], ["x0", "x1"])
field = ot.Field(mesh, function(mesh.getVertices()))
graph = field.draw()
コード例 #15
0
def test_model(myModel, test_partial_grad=True, x1=None, x2=None):

    inputDimension = myModel.getInputDimension()
    dimension = myModel.getOutputDimension()

    if x1 is None and x2 is None:
        x1 = ot.Point(inputDimension)
        x2 = ot.Point(inputDimension)
        for j in range(inputDimension):
            x1[j] = -1.0 - j
            x2[j] = 3.0 + 2.0 * j
    else:
        x1 = ot.Point(x1)
        x2 = ot.Point(x2)

    if myModel.isStationary():
        ott.assert_almost_equal(myModel(x1 - x2), myModel(x1, x2), 1e-14,
                                1e-14)
        ott.assert_almost_equal(myModel(x2 - x1), myModel(x1, x2), 1e-14,
                                1e-14)

    eps = 1e-3

    mesh = ot.IntervalMesher([7] * inputDimension).build(
        ot.Interval([-10] * inputDimension, [10] * inputDimension))

    C = myModel.discretize(mesh)
    if dimension == 1:
        # Check that discretize & computeAsScalar provide the
        # same values
        vertices = mesh.getVertices()
        for j in range(len(vertices)):
            for i in range(j, len(vertices)):
                ott.assert_almost_equal(
                    C[i, j], myModel.computeAsScalar(vertices[i], vertices[j]),
                    1e-14, 1e-14)
    else:
        # Check that discretize & operator() provide the same values
        vertices = mesh.getVertices()
        localMatrix = ot.SquareMatrix(dimension)
        for j in range(len(vertices)):
            for i in range(j, len(vertices)):
                for localJ in range(dimension):
                    for localI in range(dimension):
                        localMatrix[localI, localJ] = C[i * dimension + localI,
                                                        j * dimension + localJ]
                ott.assert_almost_equal(localMatrix,
                                        myModel(vertices[i], vertices[j]),
                                        1e-14, 1e-14)

    # Now we suppose that discretize is ok
    # we look at crossCovariance of (vertices, vertices) which should return the same values
    C.getImplementation().symmetrize()
    crossCov = myModel.computeCrossCovariance(vertices, vertices)
    ott.assert_almost_equal(
        crossCov, C, 1e-14, 1e-14,
        "in " + myModel.getClassName() + "::computeCrossCovariance")

    # Now crossCovariance(sample, sample) is ok
    # Let us validate crossCovariance(Sample, point) with 1st column(s) of previous calculations
    crossCovSamplePoint = myModel.computeCrossCovariance(vertices, vertices[0])
    crossCovCol = crossCov.reshape(crossCov.getNbRows(), dimension)
    ott.assert_almost_equal(
        crossCovSamplePoint, crossCovCol, 1e-14, 1e-14,
        "in " + myModel.getClassName() + "::computeCrossCovarianceSamplePoint")

    if test_partial_grad:
        grad = myModel.partialGradient(x1, x2)

        if (dimension == 1):
            gradfd = ot.Matrix(inputDimension, 1)
            for j in range(inputDimension):
                x1_g = ot.Point(x1)
                x1_d = ot.Point(x1)
                x1_g[j] = x1_d[j] + eps
                x1_d[j] = x1_d[j] - eps
                gradfd[j, 0] = (myModel.computeAsScalar(x1_g, x2) -
                                myModel.computeAsScalar(x1_d, x2)) / (2 * eps)
        else:
            gradfd = ot.Matrix(inputDimension, dimension * dimension)
            covarianceX1X2 = myModel(x1, x2)
            centralValue = ot.Point(covarianceX1X2.getImplementation())
            # Loop over the shifted points
            for i in range(inputDimension):
                currentPoint = ot.Point(x1)
                currentPoint[i] += eps
                localCovariance = myModel(currentPoint, x2)
                currentValue = ot.Point(localCovariance.getImplementation())
                for j in range(currentValue.getSize()):
                    gradfd[i, j] = (currentValue[j] - centralValue[j]) / eps

        ott.assert_almost_equal(grad, gradfd, 1e-5, 1e-5,
                                "in " + myModel.getClassName() + " grad")
コード例 #16
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.TESTPREAMBLE()

for diamond in [False, True]:
    mesher1D = ot.IntervalMesher([5])
    print("mesher1D=", mesher1D)
    mesh1D = mesher1D.build(ot.Interval(-1.0, 2.0), diamond)
    print("mesh1D=", mesh1D)

    mesher2D = ot.IntervalMesher([5, 5])
    print("mesher2D=", mesher2D)
    mesh2D = mesher2D.build(ot.Interval([-1.0, -1.0], [2.0, 2.0]), diamond)
    print("mesh2D=", mesh2D)

    mesher3D = ot.IntervalMesher([5]*3)
    print("mesher3D=", mesher3D)
    try:
        mesh3D = mesher3D.build(ot.Interval(3), diamond)
        print("mesh3D=", mesh3D)
    except RuntimeError:
        print('notyetimpl')
コード例 #17
0
#
# In this example we are going to assess a Karhunen-Loeve decomposition
#

# %%
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)

# %%
# Create a Gaussian process
numberOfVertices = 20
interval = ot.Interval(-1.0, 1.0)
mesh = ot.IntervalMesher([numberOfVertices - 1]).build(interval)
covariance = ot.SquaredExponential()
process = ot.GaussianProcess(covariance, mesh)

# %%
# decompose it using KL-SVD
sampleSize = 100
processSample = process.getSample(sampleSize)
threshold = 1.0e-7
algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold)
algo.run()
klresult = algo.getResult()

# %%
# Instanciate the validation service
validation = ot.KarhunenLoeveValidation(processSample, klresult)
コード例 #18
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.TESTPREAMBLE()

# Create a KarhunenLoeveResult
mesh = ot.IntervalMesher([9]).build(ot.Interval(-1.0, 1.0))
cov1D = ot.AbsoluteExponential([1.0])
algo = ot.KarhunenLoeveP1Algorithm(mesh, cov1D, 0.0)
algo.run()
result = algo.getResult()
projection = ot.KarhunenLoeveProjection(result)
# Construction based on a FieldFunction followed by a FieldToPointFunction
fieldFunction = ot.ValueFunction(ot.SymbolicFunction("x", "x"), mesh)
# Create an instance
myFunc = ot.FieldToPointConnection(projection, fieldFunction)

print("myFunc=", myFunc)
# Get the input and output description
print("myFunc input description=", myFunc.getInputDescription())
print("myFunc output description=", myFunc.getOutputDescription())
# Get the input and output dimension
print("myFunc input dimension=", myFunc.getInputDimension())
print("myFunc output dimension=", myFunc.getOutputDimension())
# Connection on a field
field = result.getModesAsProcessSample().computeMean()
print("field=", field)
print("myFunc(field)=", myFunc(field.getValues()))
print("called ", myFunc.getCallsNumber(), " times")
コード例 #19
0
def get_fem_vertices(min_vertices, max_vertices, n_elements):
    interval = ot.Interval([min_vertices],[max_vertices])
    mesher = ot.IntervalMesher([n_elements])
    fem_vertices = mesher.build(interval)
    return fem_vertices
コード例 #20
0
===================
"""
# %%
# In this example we are going to concatenate several processes that share the same mesh.

# %%
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt

ot.Log.Show(ot.Log.NONE)

# %%
# Create processes to aggregate
myMesher = ot.IntervalMesher(ot.Indices([100, 10]))
lowerbound = [0.0, 0.0]
upperBound = [2.0, 4.0]
myInterval = ot.Interval(lowerbound, upperBound)
myMesh = myMesher.build(myInterval)
myProcess1 = ot.WhiteNoise(ot.Normal(), myMesh)
myProcess2 = ot.WhiteNoise(ot.Triangular(), myMesh)

# %%
# Draw values of a realization of the 2nd process
marginal = ot.HistogramFactory().build(myProcess1.getRealization().getValues())
graph = marginal.drawPDF()
view = viewer.View(graph)

# %%
# Create an aggregated process
コード例 #21
0
ファイル: t_Mesh_std.py プロジェクト: sofianehaddad/openturns
print("Nearest index(", points, ")=", tree.query(points))
print("P1 gram=\n", mesh3D.computeP1Gram())
rotation = ot.SquareMatrix(3)
rotation[0, 0] = m.cos(m.pi / 3.0)
rotation[0, 1] = m.sin(m.pi / 3.0)
rotation[1, 0] = -m.sin(m.pi / 3.0)
rotation[1, 1] = m.cos(m.pi / 3.0)
rotation[2, 2] = 1.0

# isregular bug
time_grid = ot.RegularGrid(0.0, 0.2, 40963)
mesh = ot.Mesh(time_grid)
print(mesh.isRegular())

# numerical limit testcase
m1 = ot.IntervalMesher([1] * 2).build(ot.Interval([0.0] * 2, [1.0] * 2))
simplex = 0
point = [0.8, 0.2]
found, coordinates = m1.checkPointInSimplexWithCoordinates(point, simplex)
assert found, "not inside"

# Fix https://github.com/openturns/openturns/issues/1547
# We force the checking
try:
    vertices = [[2.1], [2.8], [3.5], [4.2], [4.9], [5.6], [6.3], [7.0]]
    simplices = [[3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10]]
    mesh = ot.Mesh(vertices, simplices, True)
    weights = mesh.computeWeights()
except Exception:
    print('ok')
# %%
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import numpy as np
ot.Log.Show(ot.Log.NONE)

# %%
# We first define the time grid associated with the model.

# %%
tmin = 0.0  # Minimum time
tmax = 12.  # Maximum time
gridsize = 100  # Number of time steps
mesh = ot.IntervalMesher([gridsize-1]).build(ot.Interval(tmin, tmax))

# %%
vertices = mesh.getVertices()

# %%
# Creation of the input distribution.

# %%
distZ0 = ot.Uniform(100.0, 150.0)
distV0 = ot.Normal(55.0, 10.0)
distM = ot.Normal(80.0, 8.0)
distC = ot.Uniform(0.0, 30.0)
distribution = ot.ComposedDistribution([distZ0, distV0, distM, distC])

# %%
コード例 #23
0
    def __call__(self, i, j):
        pt1 = self.vertices[i]
        pt2 = self.vertices[j]
        difference = pt1 - pt2
        val = m.exp(-difference.norm() / self.scaling)
        return val


ot.ResourceMap.SetAsBool('HMatrix-ForceSequential', True)
ot.ResourceMap.SetAsUnsignedInteger('HMatrix-MaxLeafSize', 10)

ot.PlatformInfo.SetNumericalPrecision(3)

n = 2
indices = [n, n]
intervalMesher = ot.IntervalMesher(indices)
interval = ot.Interval([0.0] * 2, [1.0] * 2)
mesh2D = intervalMesher.build(interval)
vertices = mesh2D.getVertices()

factory = ot.HMatrixFactory()
parameters = ot.HMatrixParameters()
parameters.setAssemblyEpsilon(1.e-6)
parameters.setRecompressionEpsilon(1.e-6)
# HMatrix must be symmetric in order to perform Cholesky decomposition
hmat = factory.build(vertices, 1, True, parameters)
simpleAssembly = TestHMatrixRealAssemblyFunction(vertices, 0.1)

hmat.assembleReal(simpleAssembly, 'L')

hmatRef = ot.HMatrix(hmat)
コード例 #24
0
# We note :math:`(\underline{t}_0, \dots, \underline{t}_{N-1})` the vertices of :math:`\mathcal{M}` and :math:`(\underline{x}_0, \dots, \underline{x}_{N-1})` the associated values in :math:`\mathbb{R}^d`.
#
# A field is stored in the *Field* object that stores the mesh and the values at each vertex of the mesh.
# It can be built from a mesh and values or as a realization of a stochastic process.

# %%
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import math as m
ot.Log.Show(ot.Log.NONE)

# %%
# First, we define a regular 2-d mesh
discretization = [10, 5]
mesher = ot.IntervalMesher(discretization)
lowerBound = [0.0, 0.0]
upperBound = [2.0, 1.0]
interval = ot.Interval(lowerBound, upperBound)
mesh = mesher.build(interval)
graph = mesh.draw()
graph.setTitle('Regular 2-d mesh')
view = viewer.View(graph)

# %%
# We now create a field from a mesh and some values
values = ot.Normal([0.0] * 2, [1.0] * 2,
                   ot.CorrelationMatrix(2)).getSample(len(mesh.getVertices()))
for i in range(len(values)):
    x = values[i]
    values[i] = 0.05 * x / x.norm()
コード例 #25
0
    return [dY0, dY1]


f = ot.PythonFunction(3, 2, flow)
phi = ot.ParametricFunction(f, [2], [0.0])
solver = ot.RungeKutta(phi)

initialState = [2.0, 2.0]
nt = 47
dt = 0.1
timeGrid = ot.RegularGrid(0.0, dt, nt)
result = solver.solve(initialState, timeGrid)
xMin = result.getMin()
xMax = result.getMax()
delta = 0.2 * (xMax - xMin)
mesh = ot.IntervalMesher([12] * 2).build(
    ot.Interval(xMin - delta, xMax + delta))
field = ot.Field(mesh, phi(mesh.getVertices()))
ot.ResourceMap.SetAsScalar("Field-ArrowScaling", 0.1)
graph = field.draw()
cloud = ot.Cloud(mesh.getVertices())
cloud.setColor("black")
graph.add(cloud)
curve = ot.Curve(result)
curve.setColor("red")
curve.setLineWidth(2)
graph.add(curve)

fig = plt.figure()
ax = fig.add_subplot(111)
View(graph, figure=fig)
plt.suptitle("Lotka-Volterra ODE system")
コード例 #26
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
from math import sqrt

mesh = ot.IntervalMesher([128]).build(ot.Interval(-1.0, 1.0))
threshold = 0.001
model = ot.AbsoluteExponential([1.0])
algo = ot.KarhunenLoeveP1Algorithm(mesh, model, threshold)
algo.run()
ev = algo.getResult().getEigenvalues()
modes = algo.getResult().getScaledModesAsProcessSample()
g = modes.drawMarginal(0)
g.setXTitle("$t$")
g.setYTitle("$\sqrt{\lambda_n}\phi_n$")
g.setTitle("P1 approx. of KL expansion for $C(s,t)=e^{-|s-t|}$")

fig = plt.figure(figsize=(6, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(g, figure=fig, axes=[axis], add_legend=False)
コード例 #27
0
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

dim = 2
interval = ot.Interval([0.0] * dim, [10.0] * dim)
mesh = ot.IntervalMesher([30] * dim).build(interval)
f = ot.SymbolicFunction(["x", "y"], ["x + 0.5*sin(y)", "y-0.1*x*sin(x)"])
mesh.setVertices(f(mesh.getVertices()))

simplices = mesh.getSimplices()
nrSimplices = len(simplices)
naive = ot.NaiveEnclosingSimplex(mesh.getVertices(), simplices)
print("naive=", naive)

ot.RandomGenerator.SetSeed(0)
test = ot.ComposedDistribution([ot.Uniform(-1.0, 11.0)] * dim).getSample(100)

for i, vertex in enumerate(test):
    index = naive.query(vertex)
    if index >= nrSimplices:
        print(i, "is outside")
    else:
        found, coordinates = mesh.checkPointInSimplexWithCoordinates(
            vertex, index)
        if not found:
            print("Wrong simplex found for", vertex, "(index=", index,
                  simplices[index], "barycentric coordinates=", coordinates)
コード例 #28
0
point = ot.Point([123.456, 125.43, 3975.4567])
point2 = ot.Point(3, 789.123)
point3 = ot.Point(3, 1673.456)
point4 = ot.Point(3, 789.654123)

sample = ot.Sample(1, point)
sample.add(point2)
sample.add(point3)
sample.add(point4)
sample.add(point2)
sample.add(point4)
sample.add(point3)
print(sample)
study.add('sample', sample)

mesh = ot.IntervalMesher([50] * 3).build(ot.Interval(3))
study.add('mesh', mesh)

study.save()

study2 = ot.Study()
study2.setStorageManager(ot.XMLH5StorageManager(fileName))

study2.load()
sample2 = ot.Sample()
study2.fillObject('sample', sample2)
print(sample2)
assert sample == sample2, "wrong sample"

mesh2 = ot.Mesh()
study2.fillObject('mesh', mesh2)
コード例 #29
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create a process X: R^2 --> R^2

# Define a bi dimensional mesh as a box
myIndices = ot.Indices([40, 20])
myMesher = ot.IntervalMesher(myIndices)
lowerBound = [0.0, 0.0]
upperBound = [2.0, 1.0]
myInterval = ot.Interval(lowerBound, upperBound)
myMesh = myMesher.build(myInterval)

# Define a scalar temporal Gaussian process on the mesh
# this process is stationary
# myXproc R^2 --> R
amplitude = [1.0]
scale = [0.2, 0.2]
myCovModel = ot.ExponentialModel(scale, amplitude)
myXproc = ot.GaussianProcess(myCovModel, myMesh)

# Transform myXproc to make its variance depend on the vertex (s,t)
# and to get a positive process
# thanks to the spatial function g
# myXtProcess R --> R
g = ot.SymbolicFunction(['x1'], ['exp(x1)'])
myDynTransform = ot.ValueFunction(g, 2)
myXtProcess = ot.CompositeProcess(myDynTransform, myXproc)

myField = myXtProcess.getRealization()
コード例 #30
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

try:
    mesh = ot.IntervalMesher(ot.Indices(1, 9)).build(ot.Interval(-1.0, 1.0))
    factory = ot.KarhunenLoeveP1Factory(mesh, 0.0)
    eigenValues = ot.NumericalPoint()
    KLModes = factory.buildAsProcessSample(ot.AbsoluteExponential([1.0]),
                                           eigenValues)
    print("KL modes=", KLModes)
    print("KL eigenvalues=", eigenValues)
    cov1D = ot.AbsoluteExponential([1.0])
    KLFunctions = factory.build(cov1D, eigenValues)
    print("KL functions=", KLFunctions)
    print("KL eigenvalues=", eigenValues)
    R = ot.CorrelationMatrix(2, [1.0, 0.5, 0.5, 1.0])
    scale = [1.0]
    amplitude = [1.0, 2.0]
    cov2D = ot.ExponentialModel(scale, amplitude, R)
    KLFunctions = factory.build(cov2D, eigenValues)
    print("KL functions=", KLFunctions)
    print("KL eigenvalues=", eigenValues)

except:
    import sys
    print("t_KarhunenLoeveP1Factory_std.py",
          sys.exc_info()[0],
          sys.exc_info()[1])