def test_getSample_getMean(self): """Test InverseWishart.getSample and InverseWishart.getMean""" d, Scale, DoF, N = self.dimension, self.Scale, self.DoF, int(1E+4) Identity = ot.CovarianceMatrix(d) Scale_wishart = ot.CovarianceMatrix(Scale.solveLinearSystem(Identity)) inverse_wishart = ot.InverseWishart(Scale, DoF) sample_inverse = ot.Sample(N, (d * (d + 1)) // 2) sample = ot.Sample(N, (d * (d + 1)) // 2) for i in range(N): M_inverse = inverse_wishart.getRealizationAsMatrix() M = M_inverse.solveLinearSystem(Identity) indice = 0 for j in range(d): for k in range(j + 1): sample_inverse[i, indice] = M_inverse[k, j] sample[i, indice] = M[k, j] indice += 1 mean_inverse = sample_inverse.computeMean() mean = sample.computeMean() theoretical_mean_inverse = inverse_wishart.getMean() theoretical_mean = (ot.Wishart(Scale_wishart, DoF)).getMean() indice, coefficient = 0, 1. / (DoF - d - 1) for j in range(d): for k in range(j + 1): assert_almost_equal(theoretical_mean_inverse[indice], coefficient * Scale[k, j]) assert_almost_equal(theoretical_mean[indice], DoF * Scale_wishart[k, j]) assert_almost_equal(mean_inverse[indice], coefficient * Scale[k, j], 0.15, 1.E-3) assert_almost_equal(mean[indice], DoF * Scale_wishart[k, j], 0.15, 1.E-3) indice += 1
import openturns as ot from matplotlib import pyplot as plt from openturns.viewer import View if (ot.Wishart().__class__.__name__ == 'ComposedDistribution'): correlation = ot.CorrelationMatrix(2) correlation[1, 0] = 0.25 aCopula = ot.NormalCopula(correlation) marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)] distribution = ot.ComposedDistribution(marginals, aCopula) elif (ot.Wishart().__class__.__name__ == 'CumulativeDistributionNetwork'): distribution = ot.CumulativeDistributionNetwork( [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])], ot.BipartiteGraph([[0, 1], [0, 1]])) else: distribution = ot.Wishart() dimension = distribution.getDimension() if dimension <= 2: if distribution.getDimension() == 1: distribution.setDescription(['$x$']) pdf_graph = distribution.drawPDF() cdf_graph = distribution.drawCDF() fig = plt.figure(figsize=(10, 4)) plt.suptitle(str(distribution)) pdf_axis = fig.add_subplot(121) cdf_axis = fig.add_subplot(122) View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False) View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False) else: distribution.setDescription(['$x_1$', '$x_2$']) pdf_graph = distribution.drawPDF() fig = plt.figure(figsize=(10, 5))
import openturns as ot from matplotlib import pyplot as plt from openturns.viewer import View if ot.Wishart().__class__.__name__ == 'ComposedDistribution': correlation = ot.CorrelationMatrix(2) correlation[1, 0] = 0.25 aCopula = ot.NormalCopula(correlation) marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)] distribution = ot.ComposedDistribution(marginals, aCopula) elif ot.Wishart().__class__.__name__ == 'CumulativeDistributionNetwork': distribution = ot.CumulativeDistributionNetwork( [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])], ot.BipartiteGraph([[0, 1], [0, 1]])) elif ot.Wishart().__class__.__name__ == 'Histogram': distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15]) else: distribution = ot.Wishart() dimension = distribution.getDimension() if dimension == 1: distribution.setDescription(['$x$']) pdf_graph = distribution.drawPDF() cdf_graph = distribution.drawCDF() fig = plt.figure(figsize=(10, 4)) plt.suptitle(str(distribution)) pdf_axis = fig.add_subplot(121) cdf_axis = fig.add_subplot(122) View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False) View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False) elif dimension == 2: distribution.setDescription(['$x_1$', '$x_2$']) pdf_graph = distribution.drawPDF()
import openturns as ot from matplotlib import pyplot as plt from openturns.viewer import View if ot.Wishart().__class__.__name__ == 'Bernoulli': distribution = ot.Bernoulli(0.7) elif ot.Wishart().__class__.__name__ == 'Binomial': distribution = ot.Binomial(5, 0.2) elif ot.Wishart().__class__.__name__ == 'ComposedDistribution': copula = ot.IndependentCopula(2) marginals = [ot.Uniform(1.0, 2.0), ot.Normal(2.0, 3.0)] distribution = ot.ComposedDistribution(marginals, copula) elif ot.Wishart().__class__.__name__ == 'CumulativeDistributionNetwork': coll = [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])] distribution = ot.CumulativeDistributionNetwork( coll, ot.BipartiteGraph([[0, 1], [0, 1]])) elif ot.Wishart().__class__.__name__ == 'Histogram': distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15]) elif ot.Wishart().__class__.__name__ == 'KernelMixture': kernel = ot.Uniform() sample = ot.Normal().getSample(5) bandwith = [1.0] distribution = ot.KernelMixture(kernel, bandwith, sample) elif ot.Wishart().__class__.__name__ == 'MaximumDistribution': coll = [ ot.Uniform(2.5, 3.5), ot.LogUniform(1.0, 1.2), ot.Triangular(2.0, 3.0, 4.0) ] distribution = ot.MaximumDistribution(coll) elif ot.Wishart().__class__.__name__ == 'Multinomial': distribution = ot.Multinomial(5, [0.2])