def __init__(self, graph: Graph, attrs: dict): super().__init__( graph, { 'kind': 'op', 'type': self.op, 'op': self.op, 'version': 'opset6', 'eps': None, 'normalize_variance': None, 'eps_mode': None, 'in_ports_count': 2, 'out_ports_count': 1, 'infer': self.infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), }, attrs)
def __init__(self, graph: Graph, attrs: dict): assert 'alpha' in attrs, 'LRN operation should have `alpha` parameter set while creation' assert 'beta' in attrs, 'LRN operation should have `beta` parameter set while creation' assert 'bias' in attrs, 'LRN operation should have `bias` parameter set while creation' assert 'size' in attrs, 'LRN operation should have `size` parameter set while creation' assert 'region' not in attrs, \ 'LRN operation should not have `region` parameter set while creation, please use AttributedLRN operation ' \ 'instead or keep using LRN operation with region expressed as second `axis`-input' super().__init__( graph, { 'type': self.op, 'op': self.op, 'version': 'opset1', 'infer': self.infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), 'in_ports_count': 2, 'out_ports_count': 1, }, attrs)
def __init__(self, graph: Graph, attrs: dict): super().__init__(graph, { 'type': None, 'op': self.op, 'in_ports_count': 5, 'out_ports_count': 1, 'infer': self.infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), }, attrs)
def batch_norm_ext(attrs): node_attrs = { 'type': 'BatchNormalization', 'eps': attrs.float('eps', 0.001), 'infer': batch_norm_4_infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), 'fix_gamma': attrs.bool('fix_gamma', False) } node_attrs.update(layout_attrs()) return node_attrs
def __init__(self, graph: Graph, attrs: dict): mandatory_props = { 'type': None, 'axis': None, 'op': self.op, 'in_ports_count': 2, 'out_ports_count': 1, 'infer': self.infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), } super().__init__(graph, mandatory_props, attrs)
def __init__(self, graph: Graph, attrs: dict): mandatory_props = { 'type': __class__.op, 'op': __class__.op, 'version': 'opset1', 'in_ports_count': 1, 'out_ports_count': 1, 'infer': copy_shape_infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), } super().__init__(graph, mandatory_props, attrs)
def tf_fused_bn_extractor(pb): is_training = pb.attr['is_training'].b if is_training: log.warning('FusedBatchNorm doesn\'t support is_training=True') return { 'data_format': pb.attr["data_format"].s, 'data_type': tf_dtype_extractor(pb.attr["T"].type), 'eps': pb.attr['epsilon'].f, 'infer': tf_fused_bn_infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), 'is_training': is_training }
def __init__(self, graph: Graph, attrs: dict): mandatory_props = { 'op': self.op, 'type': 'Convert', 'version': 'opset1', 'infer': self.infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), 'type_infer': self.type_infer, 'dst_type': None, 'in_ports_count': 1, 'out_ports_count': 1, } super().__init__(graph, mandatory_props, attrs)
def __init__(self, graph: Graph, attrs: dict): assert self.op is not None and self.op_type is not None and self.version is not None, \ 'Please use specialized Scatter operation class, Scatter is base class' mandatory_props = { 'op': self.op, 'type': self.op_type, 'version': self.version, 'is_scatter': True, # is used for gathering all types of scatters in common transformations 'infer': self.infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), 'in_ports_count': 4, 'out_ports_count': 1, } super().__init__(graph, mandatory_props, attrs)
def __init__(self, graph: Graph, attrs: dict): super().__init__( graph, { 'type': self.op, 'op': self.op, 'version': 'opset7', 'infer': roll_infer, 'reverse_infer': lambda node: reverse_bypass_infer(node, in_ports=[0]), 'in_ports_count': 3, 'out_ports_count': 1 }, attrs)