コード例 #1
0
    def extract(cls, node):
        attr = get_mxnet_layer_attrs(node.symbol_dict)

        kernel = attr.tuple("kernel", int, None)
        stride = attr.tuple("stride", int,
                            tuple(np.ones(len(kernel), dtype=np.int64)))
        padding = attr.tuple("pad", int,
                             tuple(np.zeros(len(kernel), dtype=np.int64)))
        dilate = attr.tuple("dilate", int,
                            tuple(np.ones(len(kernel), dtype=np.int64)))
        num_deformable_group = attr.int("num_deformable_group", 1)
        num_group = attr.int("num_group", 1)
        output = attr.int("num_filter", None)
        bias_term = attr.str("no_bias", 'False') == 'False'

        final_dilations = int64_array([1, 1, *[d for d in dilate]
                                       ]) if dilate is not None else None

        node_attrs = {
            'op': __class__.op,
            'bias_addable': True,
            'bias_term': bias_term,
            'pad': int64_array([[0, 0], [0, 0],
                                *[[pad, pad] for pad in padding]]),
            'pad_spatial_shape': int64_array([[pad, pad] for pad in padding]),
            'dilation': final_dilations,
            'output_spatial_shape': None,
            'output_shape': None,
            'stride': int64_array([1, 1, *[s for s in stride]]),
            'group': num_group,
            'deformable_group': num_deformable_group,
            'output': output,
            'kernel_spatial': int64_array([k for k in kernel]),
            'bilinear_interpolation_pad': True,
            'input_feature_channel': 1,
            'output_feature_channel': 0,
            'kernel_spatial_idx': None,
            'reshape_kernel': True,
            'weights_index': 2,
            'in_ports_count': 4,
            'spatial_dims': None,
            'channel_dims': int64_array([1]),
            'batch_dims': int64_array([0]),
            'layout': 'NCHW',
        }

        # update the attributes of the node
        DeformableConvolution.update_node_stat(node, node_attrs)
        return cls.enabled
コード例 #2
0
    def extract(cls, node):
        # Extract pads attribute
        # In case if pads is not specified it will be set in default (1) in infer function
        pads = onnx_attr(node,
                         'pads',
                         'ints',
                         default=None,
                         dst_type=lambda x: int64_array(x))
        assert pads is None or len(pads) % 2 == 0
        final_pad = None
        if pads is not None:
            pads = pads.reshape([2, -1])
            pads = np.transpose(pads)
            final_pad = int64_array([[0, 0], [0, 0], *pads])

        # Extract dilations attribute
        # In case if dilations is not specified it will be set in default (1) in infer function
        dilations = onnx_attr(node,
                              'dilations',
                              'ints',
                              default=None,
                              dst_type=lambda x: int64_array(x))
        final_dilations = int64_array([1, 1, *dilations
                                       ]) if dilations is not None else None

        # Extract dilations attribute
        # In case if dilations is not specified it will be set in default (1) in infer function
        strides = onnx_attr(node,
                            'strides',
                            'ints',
                            default=None,
                            dst_type=lambda x: int64_array(x))
        final_strides = int64_array([1, 1, *strides
                                     ]) if strides is not None else None

        kernel_shape = onnx_attr(node, 'kernel_shape', 'ints', default=None)
        auto_pad = onnx_attr(node,
                             'auto_pad',
                             's',
                             default=None,
                             dst_type=get_onnx_autopad)
        group = onnx_attr(node,
                          'group',
                          'i',
                          default=1,
                          dst_type=lambda x: int64_array(x))
        deformable_groups = onnx_attr(node,
                                      'deformable_groups',
                                      'i',
                                      default=1)

        attrs = {
            'op':
            __class__.op,
            'auto_pad':
            auto_pad,
            'bias_addable':
            False,
            'bias_term':
            False,
            'pad':
            final_pad,
            'pad_spatial_shape':
            int64_array(pads) if pads is not None else None,
            'dilation':
            final_dilations,
            'output_spatial_shape':
            None,
            'output_shape':
            None,
            'stride':
            final_strides,
            'group':
            group,
            'deformable_group':
            deformable_groups,
            'output':
            None,
            'weights_index':
            2,
            'kernel_spatial':
            int64_array(kernel_shape) if kernel_shape is not None else None,
            'input_feature_channel':
            1,
            'output_feature_channel':
            0,
            'kernel_spatial_idx':
            None,  # Will be calculated in infer function (np.array([2, 3]))
            'spatial_dims':
            None,  # Will be calculated in infer function
            'channel_dims':
            int64_array([1]),
            'batch_dims':
            int64_array([0]),
            'layout':
            'NCHW'
        }

        # update the attributes of the node
        DeformableConvolution.update_node_stat(node, attrs)
        return cls.enabled