def extend(op: Node): for attr in [ 'strides', 'dilations', 'pads_begin', 'pads_end', 'output_padding' ]: Extender.attr_to_list(op, attr) op['stride'] = int64_array([1, 1] + op.strides) op['dilation'] = int64_array([1, 1] + op.dilations) op['batch_dims'] = int64_array([0]) op['channel_dims'] = int64_array([1]) if op.has_valid('output_padding'): op.output_padding = int64_array([0, 0] + op.output_padding) # Be VERY careful with these attributes! op['input_feature_channel'] = 1 op['output_feature_channel'] = 0 dim = len(op.pads_begin) assert dim in (1, 2, 3), '{}D Convolution not supported!'.format(dim) pad = [[0, 0], [0, 0]] pad.extend([[op.pads_begin[i], op.pads_end[i]] for i in range(dim)]) op['pad'] = int64_array(pad) op['spatial_dims'] = [i + 2 for i in range(dim)]
def extend(op: Node): def normalize_port_map(port_map: dict): for port in port_map: for elem in ['axis', 'stride', 'part_size', 'start', 'end']: if port.get(elem) is None: port[elem] = None assert op.has( 'body' ), 'Something wrong with TensorIterator layer {}, please check!'.format( op.name) # Now op.body is an IREngine, we need to replace it with IREngine.graph op.body.graph.graph['cmd_params'] = op.graph.graph['cmd_params'] op.body.graph.graph['ir_version'] = op.graph.graph['ir_version'] op.body.graph.name = op.name + '/body' for node in op.body.graph.get_op_nodes(): node['internal_layer_id'] = int(node.id) op.body = copy_graph_with_ops(op.body.graph) normalize_port_map(op.input_port_map) normalize_port_map(op.output_port_map) for edge in op.back_edges: edge['from_layer'] = edge['from-layer'] edge['to_layer'] = edge['to-layer'] del (edge['from-layer']) del (edge['to-layer']) op['infer'] = Extender.use_shapes_from_ir
def use_shapes_from_ir(node: Node): # This function used instead of operation shape inference function to set all output shapes the same as # restored from IR. Firstly, check equality of old (restored from IR) and # new (calculated while shape inference) input shapes node['new_input_shapes'] = list() for n in node.in_ports(): if not node.in_port(n).disconnected( ): # We use such condition to handle optional inputs node.new_input_shapes.append(node.in_port(n).data.get_shape()) assert len(node.new_input_shapes) == len(node.old_input_shapes), \ 'Something wrong happened while {} node with type {} copy shape inference!'.format(node.name, node.type) for new_input_shape, old_input_shape in zip(node.new_input_shapes, node.old_input_shapes): assert np.array_equal(new_input_shape, old_input_shape), \ 'Something wrong happened while {} node with type {} copy shape inference!'.format(node.name, node.type) # We need to use number of connected input ports to avoid errors with numbering # in node.ports dictionary, where used numbers of input nodes connected_input_ports = [] for n in node.in_ports(): if not node.in_port(n).disconnected(): connected_input_ports.append(node.in_port(n)) i = len(connected_input_ports) # Set all output shapes the same as restored from IR for num in node.out_ports(): if i in node.ports: node.out_port(num).data.set_shape(int64_array( node.ports[i][0])) else: assert node.out_port(num).data.get_shape( ) is not None, "Newly added port does not have set shape" i += 1
def split_offset(offset_node: Node): paired_node = MemoryOffset(offset_node.graph, {'name': offset_node.pair_name, 'splitted': True, 'pair_name': offset_node.id, 'element_size': offset_node['element_size'], 't': offset_node.t, 'has_default': offset_node.has_default}).create_node() offset_node['splitted'] = True offset_node.out_port(0).get_connection().set_source(paired_node.out_port(0)) res_node = Result(offset_node.graph, {'name': offset_node.id + '_output'}).create_node() offset_node.out_port(0).connect(res_node.in_port(0))
def extend(op: Node): assert op.has_valid( 'element_type' ), 'Parameter node {} has missed element_type attr!'.format(op.name) op['data_type'] = destination_type_to_np_data_type(op.element_type) if op.shape == '': op.shape = int64_array([]) else: Extender.attr_to_list(op, 'shape') if -1 in op.shape: op.shape = shape_array([ d if d != -1 else dynamic_dimension_value for d in op.shape ])
def extend(op: Node): for attr in StridedSlice.get_mask_names(): # We can not use op.has_and_set(attr) here as a condition, because it will return False if begin/end is # 1D tensor and begin_mask/end_mask is equal to 0 if op.has(attr) and op[attr] != '': Extender.attr_to_list(op, attr) else: assert attr not in ['begin_mask', 'end_mask'],\ '{} is not defined for the node {}'.format(attr, op.soft_get('name', op.id)) op[attr] = int64_array([0]) op.begin_mask = int64_array([1 - i for i in op.begin_mask]) op.end_mask = int64_array([1 - i for i in op.end_mask])
def extend(op: Node): assert op.has_valid( 'element_type' ), 'Parameter node {} has missed element_type attr!'.format(op.name) op['data_type'] = destination_type_to_np_data_type(op.element_type) if op.shape == '': op.shape = int64_array([]) else: Extender.attr_to_list(op, 'shape') for i, dim in enumerate(op.shape): if dim == -1 or (isinstance(dim, str) and ".." in dim): op.shape[i] = -1 op.shape = shape_array( [d if d != -1 else dynamic_dimension_value for d in op.shape])
def replace_with_hsigmoid(graph: Graph, first_node: Node, last_node: Node): # determine the input port of first and last nodes which gets the 'input' node output add_input_port_idx = int( first_node.in_port(0).get_connection().get_source().node.soft_get('op') == 'Const') last_node_name = last_node.soft_get('name', last_node.id) hsigmoid = HSigmoid(graph, {}).create_node() hsigmoid.in_port(0).connect( first_node.in_port(add_input_port_idx).get_source()) last_node.out_port(0).get_connection().set_source(hsigmoid.out_port(0)) rename_nodes([(last_node, last_node_name + '/TBR'), (hsigmoid, last_node_name)])
def extend(op: Node): einsum_name = op.soft_get('name', op.id) if isinstance(op['equation'], list): op['equation'] = ','.join(op['equation']) elif not isinstance(op['equation'], str): assert False, "Equation of Einsum node {} has incorrect format.".format( einsum_name)
def extend(op: Node): if not op.has_valid('activations'): op['activations'] = None mark_input_bins(op, start_port=2) op['need_copy_input_blobs'] = True
def attr_restore(node: Node, attribute: str, value=None): # Function to restore some specific attr for PriorBox & PriorBoxClustered layers if not node.has_valid(attribute): node[attribute] = [] if value is None else [value] if isinstance(node[attribute], str): node[attribute] = [] else: Extender.attr_to_list(node, attribute)
def extend(op: Node): def normalize_port_map(port_map: dict): for port in port_map: for elem in [ 'axis', 'stride', 'part_size', 'start', 'end', 'purpose' ]: if port.get(elem) is None: port[elem] = None assert op.has( 'body'), 'There is no "body" attribute in the Loop op {}.'.format( op.name) # Now op.body is an IREngine, we need to replace it with IREngine.graph op.body.graph.graph['cmd_params'] = op.graph.graph['cmd_params'] op.body.graph.graph['ir_version'] = op.graph.graph['ir_version'] op.body.graph.name = op.name + '/body' for node in op.body.graph.get_op_nodes(): node['internal_layer_id'] = int(node.id) op.body = copy_graph_with_ops(op.body.graph) normalize_port_map(op.input_port_map) normalize_port_map(op.output_port_map) # the 'external_port_id' uses end-to-end numbering of ports, but at this moment it is separate for input and # output ports so we need to decrease the output por_id with a number of input ports for record in op.output_port_map: if record['external_port_id'] != -1: record['external_port_id'] -= len(op.in_ports()) for edge in op.back_edges: edge['from_layer'] = edge['from-layer'] edge['to_layer'] = edge['to-layer'] edge['to_port'] = 0 edge['from_port'] = 0 del (edge['from-layer']) del (edge['to-layer'])
def common_backpropdata_extender(op: Node): for attr in ['strides', 'output_padding', 'pads_begin', 'pads_end', 'dilations']: Extender.attr_to_list(op, attr) if op.has_valid('output_padding'): op.output_padding = int64_array([0, 0] + op.output_padding) dim = len(op.strides) if op.has_valid('pads_begin') and op.has_valid('pads_end'): pad = [[0, 0], [0, 0]] pad.extend([[op.pads_begin[i], op.pads_end[i]] for i in range(dim)]) op['pad'] = int64_array(pad) op['spatial_dims'] = [i + 2 for i in range(dim)] if not op.has_valid('dilations'): op['dilations'] = [1 for _ in range(dim)] if not op.has_valid('strides'): op['strides'] = [1 for _ in range(dim)] op['dilation'] = int64_array([1, 1] + op.dilations) op['stride'] = int64_array([1, 1] + op.strides) op['infer'] = backpropdata_infer
def extend(op: Node): assert op.has( 'then_graph' ), 'There is no "then_body" attribute in the If op {}.'.format(op.name) assert op.has( 'else_graph' ), 'There is no "else_body" attribute in the If op {}.'.format(op.name) # Now op.body is an IREngine, we need to replace it with IREngine.graph op.then_graph.graph.graph['cmd_params'] = op.graph.graph['cmd_params'] op.then_graph.graph.graph['ir_version'] = op.graph.graph['ir_version'] op.then_graph.graph.name = op.name + '/then_body' op.else_graph.graph.graph['cmd_params'] = op.graph.graph['cmd_params'] op.else_graph.graph.graph['ir_version'] = op.graph.graph['ir_version'] op.else_graph.graph.name = op.name + '/else_body' op.then_graph = copy_graph_with_ops(op.then_graph.graph) op.else_graph = copy_graph_with_ops(op.else_graph.graph) IfExtender.set_input_output_id(op.then_graph, op.then_input_port_map, op.then_output_port_map) IfExtender.set_input_output_id(op.else_graph, op.else_input_port_map, op.else_output_port_map)
def extend(op: Node): assert op.has_valid( 'element_type' ), 'Parameter node {} has missed element_type attr!'.format(op.name) op['data_type'] = destination_type_to_np_data_type(op.element_type) if op.shape == '': op.shape = int64_array([]) else: Extender.attr_to_list(op, 'shape') shape = op.shape.copy() has_shapes_with_boundaries = False for i, dim in enumerate(op.shape): if dim == -1 or (isinstance(dim, str) and ".." in dim): shape[i] = -1 if ".." in dim: has_shapes_with_boundaries = True shape = shape_array([ d if d not in [-1, '?'] else dynamic_dimension_value for d in shape ]) if has_shapes_with_boundaries: shape_list = [] for i, dim in enumerate(op.shape): if not isinstance(dim, str): shape_list.append(dim) else: shape_list.append(parse_dimension(dim)) # This value is used only for serialization of partial shapes with boundaries # for Parameter node. # 'user_shape' is not used in shape inference, as propagation of partial shapes with boundaries # is not implemented in MO. op['user_shape'] = tuple(shape_list) # If 'user_shape' is not set, 'shape' attribute is used for serialization. # 'shape' is also used for shape inference. op.shape = shape
def extend(op: Node): if op.has_valid('classes_index_type'): op['classes_index_type'] = destination_type_to_np_data_type(op.classes_index_type) if op.has_valid('sequence_length_type'): op['sequence_length_type'] = destination_type_to_np_data_type(op.sequence_length_type)
def extend(op: Node): if op.get_opset() != "extension": op['output_type'] = destination_type_to_np_data_type( op.output_type)
def extend(op: Node): if op.out_port(0).disconnected(): op['remove_values_output'] = True if op.has_valid('index_element_type'): op['index_element_type'] = destination_type_to_np_data_type( op.index_element_type)
def extend(op: Node): if not op.has_valid('activations'): op['activations'] = None
def extend(op: Node): op['dst_type'] = destination_type_to_np_data_type(op.destination_type) # CompressQuantizeWeights generates IR with constant sub-graph, that should not be ConstFolded: # Const(u8) -> Convert(to fp) -> (some eltwise operations) -> FakeQuantize if op.in_node().in_node().soft_get('type') == 'Const': op['stop_value_propagation'] = True
def attr_to_list(node: Node, attribute: str): if not node.has_valid(attribute): log.warning('Attribute {} missed in node {} with type {}!'.format( attribute, node.soft_get('name'), node.soft_get('type'))) elif not isinstance(node[attribute], list): node[attribute] = [node[attribute]]
def extend(op: Node): if op.has_valid('output_type'): op['output_type'] = destination_type_to_np_data_type( op.output_type)
def extend(op: Node): if not op.has_valid('activations'): op['activations'] = None op['infer'] = Extender.use_shapes_from_ir