コード例 #1
0
def test_statistics_collector_subsets(tmp_path, models, model_name,
                                      model_framework):
    with open(PATHS2DATASETS_CONFIG.as_posix()) as f:
        data_source = Dict(json.load(f))['ImageNet2012'].pop('source_dir')

    engine_config = Dict({
        'type':
        'simplified',
        'data_source':
        '{}/{}'.format(data_source, 'ILSVRC2012_val*'),
        'device':
        'CPU'
    })

    minmax_config = Dict({
        'target_device': 'CPU',
        'preset': 'performance',
        'stat_subset_size': 1,
        'ignored': []
    })
    bias_correction_config = Dict({
        'target_device': 'CPU',
        'preset': 'performance',
        'stat_subset_size': 2
    })

    model = models.get(model_name, model_framework, tmp_path)
    model = load_model(model.model_params)
    data_loader = create_data_loader(engine_config, model)
    engine = create_engine(engine_config, data_loader=data_loader, metric=None)
    collector = StatisticsCollector(engine)
    min_max_algo = MinMaxQuantization(minmax_config, engine)
    min_max_algo.register_statistics(model, collector)
    bias_correction_algo = BiasCorrection(bias_correction_config, engine)
    bias_correction_algo.register_statistics(model, collector)
    collector.compute_statistics(model)

    out = {
        'MinMaxQuantization':
        collector.get_statistics_for_algorithm('MinMaxQuantization'),
        'BiasCorrection':
        collector.get_statistics_for_algorithm('BiasCorrection')
    }

    refs_file = Path(
        __file__).parent / 'data/test_cases_refs/statistics_data.txt'
    with open(refs_file.as_posix()) as file:
        refs = json.loads(json.load(file))

    eps = 1e-3
    for algo_name, algo_val in out.items():
        for node_name, node_val in algo_val.items():
            for stats_name, stats_val in node_val.items():
                if stats_name == 'batch_mean_param_in':
                    continue
                ref_stats_vals = refs[algo_name][node_name][stats_name]
                for ref_vals, vals in zip(ref_stats_vals, stats_val):
                    assert np.max(np.abs(np.array(ref_vals) - vals)) < eps
コード例 #2
0
def get_fq_nodes_stats_algo(model, preset, bits, is_weights, clipping_value=None):
    test_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                            './data/reference_scale/test_data')

    config = _get_pytorch_accuracy_checker_config(test_dir)

    compression_config = Dict(
        {
            'name': 'MinMaxQuantization',
            'stat_subset_size': 1,
            'preset': preset,
            'target_device': 'CPU',
            'activations': {
                'bits': bits,
                'range_estimator': {
                    'max': {
                        'clipping_value': clipping_value
                    }
                }

            },
            'weights': {
                'bits': bits,
                'mode': 'symmetric' if preset == 'performance' else 'asymmetric'
            }
        })

    engine = ACEngine(config)
    compression_config.subset_indices = [0]
    algo = COMPRESSION_ALGORITHMS.get('MinMaxQuantization')(compression_config, engine)

    model = load_model(model.model_params)

    stats_collector = StatisticsCollector(engine)
    algo.register_statistics(model, stats_collector)
    stats_collector.compute_statistics(model)

    model = algo.run(model)
    out = {}
    for fq in mu.get_nodes_by_type(model, ['FakeQuantize']):
        fq_inputs = get_node_inputs(fq)
        if is_weights and fq_inputs[0].type == 'Const':
            min_weights = np.reshape(fq_inputs[1].value, (fq_inputs[1].value.shape[0]))
            max_weights = np.reshape(fq_inputs[2].value, (fq_inputs[2].value.shape[0]))
            out[fq.name] = {'low_level': min_weights, 'high_level': max_weights}
        elif not is_weights and fq_inputs[0].type != 'Const':
            if not fq_inputs[1].value.shape:
                out[fq.name] = {'low_level': fq_inputs[1].value, 'high_level': fq_inputs[2].value}
            else:
                min_act = np.reshape(fq_inputs[1].value, (fq_inputs[1].value.shape[1]))
                max_act = np.reshape(fq_inputs[2].value, (fq_inputs[2].value.shape[1]))
                out[fq.name] = {'low_level': min_act, 'high_level': max_act}
    return out
コード例 #3
0
def test_statistics_collector_subsets(tmp_path, models, model_name,
                                      model_framework):
    with open(PATHS2DATASETS_CONFIG.as_posix()) as f:
        data_source = Dict(json.load(f))['ImageNet2012'].pop('source_dir')

    engine_config = Dict({
        'type':
        'simplified',
        'data_source':
        '{}/{}'.format(data_source, 'ILSVRC2012_val*'),
        'device':
        'CPU'
    })

    minmax_config = Dict({
        'target_device': 'CPU',
        'preset': 'performance',
        'stat_subset_size': 1,
        'ignored': []
    })
    bias_correction_config = Dict({
        'target_device': 'CPU',
        'preset': 'performance',
        'stat_subset_size': 2
    })

    model = models.get(model_name, model_framework, tmp_path)
    model = load_model(model.model_params)
    data_loader = create_data_loader(engine_config, model)
    engine = create_engine(engine_config, data_loader=data_loader, metric=None)
    collector = StatisticsCollector(engine)
    min_max_algo = MinMaxQuantization(minmax_config, engine)
    min_max_algo.register_statistics(model, collector)
    bias_correction_algo = BiasCorrection(bias_correction_config, engine)
    bias_correction_algo.register_statistics(model, collector)
    collector.compute_statistics(model)

    out = {
        'MinMaxQuantization':
        collector.get_statistics_for_algorithm('MinMaxQuantization'),
        'BiasCorrection':
        collector.get_statistics_for_algorithm('BiasCorrection')
    }

    refs_file = Path(
        __file__
    ).parent / 'data/test_cases_refs' / f'{model_name}_statistics_data.json'
    local_path = os.path.join(
        tmp_path, '{}_{}.json'.format(model_name, 'statistics_data'))
    local_file = open(local_path, 'w')

    with open(refs_file.as_posix()) as file:
        refs = json.load(file)

    eps = 1e-3
    local_out = {}
    for algo_name, algo_val in out.items():
        local_out[algo_name] = {}
        for node_name, node_val in algo_val.items():
            if isinstance(node_name, tuple):
                name = f'{node_name[0]}.{node_name[1]}'
            else:
                name = node_name
            local_out[algo_name][name] = {}
            for stats_name, stats_val in node_val.items():
                local_out[algo_name][name][stats_name] = [
                    np.array(v).tolist() for v in stats_val
                ]
    json.dump(local_out, local_file)
    for algo_name, algo_val in out.items():
        for node_name, node_val in algo_val.items():
            for stats_name, stats_val in node_val.items():
                if stats_name in ['batch_mean_param_in', 'shape']:
                    continue
                if isinstance(node_name, tuple):
                    node_name = f'{node_name[0]}.{node_name[1]}'
                ref_stats_vals = refs[algo_name][node_name][stats_name]
                for ref_vals, vals in zip(ref_stats_vals, stats_val):
                    assert np.max(np.abs(np.array(ref_vals) - vals)) < eps
コード例 #4
0
def test_fake_quantize_configurations(tmp_path, models, model_name,
                                      model_framework, algo_mode):
    test_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                            './data/reference_scale/test_data')

    config = _get_pytorch_accuracy_checker_config(test_dir) \
        if model_framework == 'pytorch' else _get_tf_accuracy_checker_config(test_dir)

    if algo_mode == 'symmetric':
        activations_mode, weights_mode, level_low = 'symmetric', 'symmetric', -127
    elif algo_mode == 'asymmetric':
        activations_mode, weights_mode, level_low = 'asymmetric', 'asymmetric', -128
    else:
        activations_mode, weights_mode, level_low = 'asymmetric', 'symmetric', -127

    compression_config = Dict({
        'name': 'MinMaxQuantization',
        'stat_subset_size': 1,
        'preset': 'performance',
        'target_device': 'CPU',
        'activations': {
            'bits': 8,
            'mode': activations_mode
        },
        'weights': {
            'bits': 8,
            'mode': weights_mode,
            'granularity': 'perchannel',
            'level_low': level_low,
            'level_high': 127
        }
    })

    def _make_list(x):
        if isinstance(x, np.ndarray):
            x = x.tolist()
        if isinstance(x, list):
            return x
        return [x]

    engine = ACEngine(config)
    compression_config.subset_indices = [0]
    algo = COMPRESSION_ALGORITHMS.get('MinMaxQuantization')(compression_config,
                                                            engine)
    model = models.get(model_name, model_framework, tmp_path)
    model = load_model(model.model_params)

    stats_collector = StatisticsCollector(engine)
    algo.register_statistics(model, stats_collector)
    stats_collector.compute_statistics(model)

    model = algo.run(model)

    refs_path = os.path.join(REFERENCES_DIR,
                             '{}_{}.json'.format(model_name, algo_mode))
    local_path = os.path.join(tmp_path, '{}.json'.format(model_name))

    ref_exists = os.path.isfile(refs_path)

    refs = load_refs(refs_path) if ref_exists else {}
    ref_file = None if ref_exists else open(refs_path, 'w')
    local_file = open(local_path, 'w')
    model_values = {}

    eps = 1e-3
    fq_list = mu.get_nodes_by_type(model, ['FakeQuantize'])
    for fq in sorted(fq_list, key=lambda item: item.name):
        min_levels, max_levels = tuple(
            [get_node_value(node) for node in get_node_inputs(fq)[1:3]])
        fq_name = fq.name
        if get_node_input(fq, 0).type == 'Const':
            min_levels = min_levels.reshape(min_levels.shape[0])
            max_levels = max_levels.reshape(max_levels.shape[0])
        else:
            if not min_levels.shape and not max_levels.shape:
                pass
            else:
                min_levels = min_levels.reshape(min_levels.shape[1])
                max_levels = max_levels.reshape(max_levels.shape[1])

        min_levels = _make_list(min_levels)
        max_levels = _make_list(max_levels)
        model_values[fq_name] = {'max': max_levels, 'min': min_levels}

    if not ref_exists:
        json.dump(model_values, ref_file)
        return
    json.dump(model_values, local_file)

    for ref_name in refs:
        refs_min_levels = _make_list(refs[ref_name]['min'])
        refs_max_levels = _make_list(refs[ref_name]['max'])
        min_levels = model_values[ref_name]['min']
        max_levels = model_values[ref_name]['max']

        for min_level, max_level, ref_min, ref_max in zip(
                min_levels, max_levels, refs_min_levels, refs_max_levels):
            assert abs(min_level - ref_min) < eps
            assert abs(max_level - ref_max) < eps