def start(args): if args.order == 'train': train(args) elif args.order == 'valid': valid(args) compute_mAP(args) draw(args, 'loss') elif args.order == 'draw': draw(args)
def train(): if request.method == 'POST': dt = {'dataset_dir': request.form['dataset_dir']} else: dt = {'dataset_dir': request.args.get('dir')} return operations.train(dt)
def start(): args = set_global_variables() import operations if args.order == 'train': operations.train(args) print("#------train process is over!------#") elif args.order == 'valid': args.draw_option = 'mAP' operations.valid(args) operations.compute(args) operations.draw(args) print("#------valid process is over!------#") elif args.order == 'draw': operations.draw(args) elif args.order == 'compute': if args.compute_step is None: print("The compute_step cannot be None!") exit() operations.compute(args)
print(net) print() avg_train_loss = 0 avg_train_acc = 0 avg_val_loss = 0 avg_val_acc = 0 loaders = get_strange_symbol_loader_with_validation( batch_size=args.batch_size, validation_split=args.s) train_loader, val_loader = loaders train_stats = train(net, train_loader, args.learning_rate, args.momentum, epochs=args.epochs, epslon=args.epslon) print('[TRAINING] Final loss', train_stats[0]) print('[TRAINING] Final acc', train_stats[1]) avg_val_loss, avg_val_acc = validate(net, val_loader) print('[VALIDATION] Final loss', avg_val_loss) print('[VALIDATION] Final acc', avg_val_acc) print() predictions = [] labels = []