コード例 #1
0
    def test_rate_operator_functions_empty_indices(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        # Apply operator to these triangles
        indices = []
        factor = 10.0

        def main_spatial_rate(x, y, t):
            # x and y should be an n by 1 array
            return x + y

        default_rate = 0.0

        domain.tri_full_flag[0] = 0
        operator = Rate_operator(domain, rate=main_spatial_rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        Q = operator.get_Q()
        x = operator.coord_c[indices, 0]
        y = operator.coord_c[indices, 1]
        rate = main_spatial_rate(x, y, t) * factor
        Q_ex = num.sum(domain.areas[indices] * rate)
        d = operator.get_timestep() * rate + 1

        # print Q_ex, Q
        # print indices
        # print "d"
        # print d
        stage_ex = num.array([1.0, 1.0, 1.0, 1.0])
        stage_ex[indices] = d

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(Q_ex, Q)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)

        assert num.allclose(float(rr[1]), 0.0)
        assert num.allclose(float(rr[2]), 0.0)
        assert num.allclose(float(rr[3]), 0.0)
コード例 #2
0
    def test_rate_operator_simple(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = 1.0
        factor = 10.0
        default_rate = 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [21., 21., 1., 21.]

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(
            domain.fractional_step_volume_integral,
            factor * domain.timestep * (rate * domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), 1.0)
        assert num.allclose(float(rr[2]), 60.0)
コード例 #3
0
    def test_rate_operator_rate_quantity(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        # Apply operator to these triangles
        indices = [0, 1, 3]
        factor = 10.0

        from anuga import Quantity
        rate_Q = Quantity(domain)
        rate_Q.set_values(1.0)

        operator = Rate_operator(domain, rate=rate_Q, factor=factor, \
                                 indices=indices)

        # Apply Operator
        domain.timestep = 2.0
        operator()
        rate = rate_Q.centroid_values[indices]
        t = operator.get_time()
        Q = operator.get_Q()

        rate = rate * factor
        Q_ex = num.sum(domain.areas[indices] * rate)
        d = operator.get_timestep() * rate + 1

        #print "d"
        #print d
        #print Q_ex
        #print Q
        stage_ex = num.array([1.0, 1.0, 1.0, 1.0])
        stage_ex[indices] = d

        verbose = False

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(Q_ex, Q)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)

        assert num.allclose(float(rr[1]), 1.0)
        assert num.allclose(float(rr[2]), 1.0)
        assert num.allclose(float(rr[3]), 60.0)
コード例 #4
0
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t + start))
            fid.write('%s, %f %f %f\n' %
                      (t_string, 2 * t, t**2, sin(old_div(t * pi, 600))))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename + '.txt')

        #Create file function from time series
        F = file_function(
            filename + '.tms',
            quantities=['Attribute0', 'Attribute1', 'Attribute2'])

        #Now try interpolation
        for i in range(20):
            t = i * 10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2 * t)
            if i % 6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(old_div(t * pi, 600)))

        #Check non-exact

        t = 90  #Halfway between 60 and 120
        q = F(t)
        assert num.allclose(old_div((120**2 + 60**2), 2), q[1])
        assert num.allclose(
            old_div((sin(old_div(120 * pi, 600)) + sin(old_div(60 * pi, 600))),
                    2), q[2])

        t = 100  #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose(old_div(2 * 120**2, 3) + old_div(60**2, 3), q[1])
        assert num.allclose(
            old_div(2 * sin(old_div(120 * pi, 600)), 3) +
            old_div(sin(old_div(60 * pi, 600)), 3), q[2])

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = file_function(filename + '.tms', quantities=['Attribute1'])

        # Make starttime of domain consistent with tms file starttime
        domain.set_starttime(rate.starttime)

        factor = 1000.0
        default_rate = 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.set_time(360.0)
        domain.timestep = 1.0

        operator()

        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [d, d, 1., d]

        #        print d, domain.get_time(), F(360.0)

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_time(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor + d
        stage_ex1 = [d, d, 1., d]

        #         print domain.quantities['elevation'].centroid_values
        #         print domain.quantities['stage'].centroid_values
        #         print domain.quantities['xmomentum'].centroid_values
        #         print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        tmp = numpy.zeros_like(domain.quantities['stage'].centroid_values)
        tmp[:] = domain.quantities['stage'].centroid_values

        d0 = domain.fractional_step_volume_integral

        domain.set_time(-10.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor
        stage_ex2 = numpy.array([d, d, 0., d]) + numpy.array(stage_ex1)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex2)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            d0 + (d * domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), 17.7)
        assert num.allclose(float(rr[2]), 106200.0)
コード例 #5
0
    def test_rate_operator_functions_rate_default_rate(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        # Apply operator to these triangles
        indices = [0, 1, 3]
        factor = 10.0

        def main_rate(t):
            if t > 20:
                msg = 'Model time exceeded.'
                raise_(Modeltime_too_late, msg)
            else:
                return 3.0 * t + 7.0

        default_rate = lambda t: 3 * t + 7


        operator = Rate_operator(domain, rate=main_rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        d = operator.get_timestep() * main_rate(t) * factor + 1
        stage_ex = [d, d, 1., d]

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_starttime(30.0)
        domain.timestep = 1.0
        operator()

        t = operator.get_time()
        d = operator.get_timestep() * default_rate(t) * factor + d
        stage_ex = [d, d, 1., d]

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), 7.0)
        assert num.allclose(float(rr[2]), 420.0)
コード例 #6
0
    def test_rate_operator_functions_empty_indices(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = []
        factor = 10.0


        def main_spatial_rate(x,y,t):
            # x and y should be an n by 1 array
            return x + y

        default_rate = 0.0

        domain.tri_full_flag[0] = 0
        operator = Rate_operator(domain, rate=main_spatial_rate, factor=factor, \
                      indices=indices, default_rate = default_rate)


        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        Q = operator.get_Q()
        x = operator.coord_c[indices,0]
        y = operator.coord_c[indices,1]
        rate = main_spatial_rate(x,y,t)*factor
        Q_ex = num.sum(domain.areas[indices]*rate)
        d = operator.get_timestep()*rate + 1

        # print Q_ex, Q
        # print indices
        # print "d"
        # print d
        stage_ex = num.array([ 1.0,  1.0,   1.0,  1.0])
        stage_ex[indices] = d

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(Q_ex, Q)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())


        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", stats)

        assert num.allclose(float(rr[1]), 0.0)
        assert num.allclose(float(rr[2]), 0.0)
        assert num.allclose(float(rr[3]), 0.0)
コード例 #7
0
    def test_rate_operator_negative_rate_full(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 10.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        #Catchment_Rain_Polygon = read_polygon(join('CatchmentBdy.csv'))
        #rainfall = file_function(join('1y120m.tms'), quantities=['rainfall'])
        rate = -1.0
        factor = 10.0
        default_rate = 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=None, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [0., 0., 0., 0.]
        step_integral = -80.0

        #print domain.quantities['elevation'].centroid_values
        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values
        #print domain.fractional_step_volume_integral

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            step_integral)

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), -1.0)
        assert num.allclose(float(rr[2]), -80.0)
コード例 #8
0
    def test_rate_operator_rate_quantity(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0,1,3]
        factor = 10.0


        from anuga import Quantity
        rate_Q = Quantity(domain)
        rate_Q.set_values(1.0)

        operator = Rate_operator(domain, rate=rate_Q, factor=factor, \
                                 indices=indices)


        # Apply Operator
        domain.timestep = 2.0
        operator()
        rate = rate_Q.centroid_values[indices]
        t = operator.get_time()
        Q = operator.get_Q()

        rate = rate*factor
        Q_ex = num.sum(domain.areas[indices]*rate)
        d = operator.get_timestep()*rate + 1


        #print "d"
        #print d
        #print Q_ex
        #print Q
        stage_ex = num.array([ 1.0,  1.0,   1.0,  1.0])
        stage_ex[indices] = d

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(Q_ex, Q)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", stats)

        assert num.allclose(float(rr[1]), 1.0)
        assert num.allclose(float(rr[2]), 1.0)
        assert num.allclose(float(rr[3]), 60.0)
コード例 #9
0
    def test_rate_operator_simple(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})


#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0,1,3]

        rate = 1.0
        factor = 10.0
        default_rate= 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [ 21.,  21.,   1.,  21.]

#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, factor*domain.timestep*(rate*domain.areas[indices]).sum())


        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", stats)
        assert num.allclose (float(rr[1]), 1.0)
        assert num.allclose (float(rr[2]), 60.0)
コード例 #10
0
    def test_rate_operator_functions_rate_default_rate(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0,1,3]
        factor = 10.0


        def main_rate(t):
            if t > 20:
                msg = 'Model time exceeded.'
                raise Modeltime_too_late, msg
            else:
                return 3.0 * t + 7.0

        default_rate = lambda t: 3*t + 7


        operator = Rate_operator(domain, rate=main_rate, factor=factor, \
                      indices=indices, default_rate = default_rate)


        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        d = operator.get_timestep()*main_rate(t)*factor + 1
        stage_ex = [ d,  d,   1.,  d]

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())

        domain.set_starttime(30.0)
        domain.timestep = 1.0
        operator()

        t = operator.get_time()
        d = operator.get_timestep()*default_rate(t)*factor + d
        stage_ex = [ d,  d,   1.,  d]

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)


        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", stats)
        assert num.allclose(float(rr[1]), 7.0)
        assert num.allclose(float(rr[2]), 420.0)
コード例 #11
0
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]


        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t+start))
            fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600)))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename+'.txt')


        #Create file function from time series
        F = file_function(filename + '.tms',
                          quantities = ['Attribute0',
                                        'Attribute1',
                                        'Attribute2'])


        #Now try interpolation
        for i in range(20):
            t = i*10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2*t)
            if i%6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(t*pi/600))

        #Check non-exact

        t = 90 #Halfway between 60 and 120
        q = F(t)
        assert num.allclose( (120**2 + 60**2)/2, q[1] )
        assert num.allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] )


        t = 100 #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose( 2*120**2/3 + 60**2/3, q[1] )
        assert num.allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] )

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')


        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

#        print domain.quantities['elevation'].centroid_values
#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0,1,3]


        rate = file_function(filename + '.tms', quantities=['Attribute1'])


        # Make starttime of domain consistent with tms file starttime
        domain.set_starttime(rate.starttime)

        factor = 1000.0
        default_rate= 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)


        # Apply Operator
        domain.set_time(360.0)
        domain.timestep = 1.0

        operator()



        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [ d,  d,   1.,  d]

#        print d, domain.get_time(), F(360.0)

#        print domain.quantities['elevation'].centroid_values
#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())



        domain.set_time(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate*factor + d
        stage_ex1 = [ d,  d,   1.,  d]

#         print domain.quantities['elevation'].centroid_values
#         print domain.quantities['stage'].centroid_values
#         print domain.quantities['xmomentum'].centroid_values
#         print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())


        tmp = numpy.zeros_like(domain.quantities['stage'].centroid_values)
        tmp[:] = domain.quantities['stage'].centroid_values

        d0 = domain.fractional_step_volume_integral

        domain.set_time(-10.0)
        domain.timestep = 1.0

        operator()

        d = default_rate*factor
        stage_ex2 = numpy.array([ d,  d,   0.,  d]) + numpy.array(stage_ex1)

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex2)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, d0+(d*domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", stats)
        assert num.allclose(float(rr[1]), 17.7)
        assert num.allclose(float(rr[2]), 106200.0)
コード例 #12
0
    def test_rate_operator_negative_rate_full(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 10.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

#        print domain.quantities['elevation'].centroid_values
#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0,1,3]



        #Catchment_Rain_Polygon = read_polygon(join('CatchmentBdy.csv'))
        #rainfall = file_function(join('1y120m.tms'), quantities=['rainfall'])
        rate = -1.0
        factor = 10.0
        default_rate= 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=None, default_rate = default_rate)


        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [ 0.,  0.,   0.,  0.]
        step_integral = -80.0

        #print domain.quantities['elevation'].centroid_values
        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values
        #print domain.fractional_step_volume_integral


        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, step_integral)

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", stats)
        assert num.allclose(float(rr[1]), -1.0)
        assert num.allclose(float(rr[2]), -80.0)