def model(self, x, is_training): op = ops.get_n_hidden_layers(x, self.hidden_layer_list, self.activation_list, initializer='xavier') return ops.get_hidden_layer(op, 'output_layer', self.no_of_classes, 'none', initializer='xavier')
def get_model(self, x, is_training): if isinstance(self.cell_size, list): rnn_layers = [ tf.nn.rnn_cell.LSTMCell(self.cell_size[i], name=str(i)) for i in range(len(self.cell_size)) ] multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers) elif isinstance(self.cell_size, int): rnn_layers = [ tf.nn.rnn_cell.LSTMCell(self.cell_size, name=str(i)) for i in range(self.no_of_cell) ] multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers) outputs, states = tf.nn.dynamic_rnn(cell=multi_rnn_cell, inputs=x, dtype=tf.float32) op = tf.gather(outputs, int(outputs.get_shape()[1]) - 1, axis=1) op = ops.get_n_hidden_layers(op, '', self.hidden_layers, self.activation_list) return ops.get_hidden_layer(op, 'output_layer', 1, 'none')
def get_decoder(self,x,is_training): return ops.get_n_hidden_layers(x,'decoder',self.decoder_hidden_layers+[self.no_of_features],self.decoder_activation_list+['none'],'xavier')
def get_encoder(self,x,is_training): return ops.get_n_hidden_layers(x,'encoder',self.encoder_hidden_layers,self.encoder_activation_list,'xavier')
def get_model(self,x,is_training): op=ops.get_n_hidden_layers(x,'',self.hidden_layers,self.activation_list) return ops.get_hidden_layer(op,'output_layer',1,'none')