コード例 #1
0
ファイル: rnnsearch.py プロジェクト: DeepLearnXMU/WDCNMT
def train(args):
    option = default_option()

    # predefined model names
    pathname, basename = os.path.split(args.model)
    modelname = get_filename(basename)
    autoname_format = os.path.join(pathname, modelname + ".iter{epoch}-{batch}.pkl")
    bestname = os.path.join(pathname, modelname + ".best.pkl")

    # load models
    if os.path.exists(args.model):
        opt, params = load_model(args.model)
        override(option, opt)
        init = False
    else:
        init = True

    if args.initialize:
        print "initialize:", args.initialize
        pretrain_params = load_model(args.initialize)
        pretrain_params = pretrain_params[1]
        pretrain = True
    else:
        pretrain = False

    override(option, args_to_dict(args))

    # check external validation script
    ext_val_script = option['ext_val_script']
    if not os.path.exists(ext_val_script):
        raise ValueError('File doesn\'t exist: %s' % ext_val_script)
    elif not os.access(ext_val_script, os.X_OK):
        raise ValueError('File is not executable: %s' % ext_val_script)

    # check references format
    ref_stem = option['references']
    if option['validation'] and option['references']:
         ref_stem = misc.infer_ref_stem([option['validation']], option['references'])
         ref_stem = ref_stem[0]

    # .yaml for ultimate options
    yaml_name = "%s.settings.yaml" % modelname
    if init or not os.path.exists(yaml_name):
        with open(yaml_name, "w") as w:
            _opt = args.__dict__.copy()
            for k, v in _opt.iteritems():
                if k in option:
                    _opt[k] = option[k]
            yaml.dump(_opt, w,
                      default_flow_style=False)
            del _opt

    print_option(option)

    # reader
    batch = option["batch"]
    sortk = option["sort"]
    shuffle = option["shuffle"]
    reader = textreader(option["corpus"][:3], shuffle)
    processor = [data_length, data_length, data_length]
    stream = textiterator(reader, [batch, batch * sortk], processor,
                          option["limit"], option["sort"])

    reader = textreader(option["corpus"][3:], shuffle)
    processor = [data_length, data_length, data_length]
    dstream = textiterator(reader, [batch, batch * sortk], processor,
                           None, option["sort"])

    # progress
    # initialize before building model
    progress = Progress(option["delay_val"], stream, option["seed"])

    # create model
    regularizer = []

    if option["l1_scale"]:
        regularizer.append(ops.l1_regularizer(option["l1_scale"]))

    if option["l2_scale"]:
        regularizer.append(ops.l2_regularizer(option["l2_scale"]))

    scale = option["scale"]
    initializer = ops.random_uniform_initializer(-scale, scale)
    regularizer = ops.sum_regularizer(regularizer)

    option["scope"] = "rnnsearch"

    model = build_model(initializer=initializer, regularizer=regularizer,
                        **option)

    variables = None

    if pretrain:
        matched, not_matched = match_variables(ops.trainable_variables(),
                                               pretrain_params)
        if args.finetune:
            variables = not_matched
            if not variables:
                raise RuntimeError("no variables to finetune")

    if pretrain:
        restore_variables(matched, not_matched)

    if not init:
        set_variables(ops.trainable_variables(), params)

    print "parameters: %d\n" % count_parameters(ops.trainable_variables())

    # tuning option
    tune_opt = {}
    tune_opt["algorithm"] = option["optimizer"]
    tune_opt["constraint"] = ("norm", option["norm"])
    tune_opt["norm"] = True
    tune_opt["variables"] = variables

    # create optimizer
    scopes = ["((?!Shared).)*$"]
    trainer = optimizer(model.inputs, model.outputs, model.cost, scopes, **tune_opt)
    clascopes = [".*(Shared).*"]
    clatrainer = optimizer(model.inputs_cla, model.outputs_cla, model.cost_cla, clascopes, **tune_opt)

    #scopes = [".*(DSAenc).*"]
    #domain_trainer = optimizer(model.inputs, model.toutputs, model.domaincost, scopes, **tune_opt)

    # vocabulary and special symbol
    svocabs, tvocabs = option["vocabulary"]
    svocab, isvocab = svocabs
    tvocab, itvocab = tvocabs
    unk_sym = option["unk"]
    eos_sym = option["eos"]

    alpha = option["alpha"]

    maxepoch = option["maxepoch"]

    # restore right before training to avoid randomness changing when trying to resume progress
    if not args.reset:
        if "#progress" in option:
            print 'Restore progress >>'
            progress = (option["#progress"])
            stream = progress.iterator
            stream.set_processor(processor)
        else:
            print 'New progress >>'
    else:
        print 'Discard progress >>'

    if args.drop_tasks:
        print 'drop tasks'
        progress.drop_tasks()

    # setup progress
    progress.oldname = args.model
    progress.serializer = serialize

    stream = progress.iterator
    overwrite = not args.no_overwrite

    if progress.task_manager:
        print progress.task_manager

    register_killer()

    tagvocab = {}
    for idx, d in enumerate(option["dvocab"]):
        tagvocab[d] = idx

    if len(tagvocab) != option["dnum"]:
        raise ValueError('length of domain vocab %f not equal to domain num %f!' % (len(tagvocab), option["dnum"]))

    try:
        while progress.epoch < maxepoch:
            epc = progress.epoch
            for data in stream:
                progress.tic()
                if progress.failed():
                    raise RuntimeError("progress failure")
                # data = _stream.next()
                xdata, xmask = convert_data(data[0], svocab, unk_sym, eos_sym)
                ydata, ymask = convert_data(data[1], tvocab, unk_sym, eos_sym)
                tag = convert_tag(data[2], tagvocab)

                t1 = time.time()
                cost, dcost, scost, tdcost, norm = trainer.optimize(xdata, xmask, ydata, ymask, tag)
                clacost, _ = clatrainer.optimize(xdata, xmask, tag)
                trainer.update(alpha=alpha)
                clatrainer.update(alpha=alpha)

                t2 = time.time()

                # per word cost
                w_cost = cost * ymask.shape[1] / ymask.sum()

                progress.batch_count += 1
                progress.batch_total += 1
                progress.loss_hist.append(w_cost)

                if not args.pfreq or count % args.pfreq == 0:
                    print epc + 1, progress.batch_count, w_cost, dcost, tdcost, scost, clacost, norm, t2 - t1

                count = progress.batch_count

                if count % option["sfreq"] == 0:
                    dright = 0.0
                    sright = 0.0
                    tdright = 0.0
                    total = 0.0
                    for ddata in dstream:
                        txdata, txmask = convert_data(ddata[0], svocab, unk_sym, eos_sym)
                        tydata, tymask = convert_data(ddata[1], tvocab, unk_sym, eos_sym)
                        txtag = convert_tag(ddata[2], tagvocab)
                        dtag_pred, stag_pred = model.tag_predict(txdata, txmask)
                        txtag = txtag[0]
                        dpretag = []
                        for i in dtag_pred:
                            dpretag.append(int(i))

                        spretag = []
                        for i in stag_pred:
                            spretag.append(int(i))

                        tdtag_pred = model.tgt_tag_predict(txdata, txmask, tydata, tymask)
                        tdpretag = []
                        for i in tdtag_pred[0]:
                            tdpretag.append(int(i))

                        dright = dright + sum([m == n for m, n in zip(txtag, dpretag)])
                        sright = sright + sum([m == n for m, n in zip(txtag, spretag)])
                        tdright = tdright + sum([m == n for m, n in zip(txtag, tdpretag)])
                        total = total + len(dpretag)
                    dstream.reset()
                    dacc = dright * 1.0 / total
                    sacc = sright * 1.0 / total
                    tdacc = tdright * 1.0 / total
                    print "dacc:", dright, dacc
                    print "sacc", sright, sacc
                    print "tdacc", tdright, tdacc

                if count % option["vfreq"] == 0 and not should_skip_val(args.skip_val, option["vfreq"], epc,
                                                                        progress.batch_total):
                    if option["validation"] and option["references"]:
                        progress.add_valid(option['scope'], option['validation'], ref_stem, ext_val_script, __file__,
                                           option, modelname, bestname, serialize)

                # save after validation
                progress.toc()

                if count % option["freq"] == 0:
                    progress.save(option, autoname_format, overwrite)

                progress.tic()

                if count % option["sfreq"] == 0:
                    n = len(data[0])
                    ind = numpy.random.randint(0, n)
                    sdata = data[0][ind]
                    tdata = data[1][ind]
                    xdata = xdata[:, ind: ind + 1]
                    xmask = xmask[:, ind: ind + 1]

                    hls = beamsearch(model, xdata, xmask)
                    best, score = hls[0]

                    print "--", sdata
                    print "--", tdata
                    print "--", " ".join(best[:-1])
                progress.toc()
            print "--------------------------------------------------"
            progress.tic()
            if option["validation"] and option["references"]:
                progress.add_valid(option['scope'], option['validation'], ref_stem, ext_val_script, __file__, option,
                                   modelname, bestname, serialize)
            print "--------------------------------------------------"

            progress.toc()

            print "epoch cost {}".format(numpy.mean(progress.loss_hist))
            progress.loss_hist = []

            # early stopping
            if epc + 1 >= option["stop"]:
                alpha = alpha * option["decay"]

            stream.reset()

            progress.epoch += 1
            progress.batch_count = 0
            # update autosave
            option["alpha"] = alpha
            progress.save(option, autoname_format, overwrite)

        stream.close()

        progress.tic()
        print "syncing ..."
        progress.barrier()  # hangup and wait
        progress.toc()

        best_valid = max(progress.valid_hist, key=lambda item: item[1])
        (epc, count), score = best_valid

        print "best bleu {}-{}: {:.4f}".format(epc + 1, count, score)

        if progress.delay_val:
            task_elapse = sum([task.elapse for task in progress.task_manager.tasks])
            print "training finished in {}({})".format(datetime.timedelta(seconds=int(progress.elapse)),
                                                       datetime.timedelta(seconds=int(progress.elapse + task_elapse)))
        else:
            print "training finished in {}".format(datetime.timedelta(seconds=int(progress.elapse)))
        progress.save(option, autoname_format, overwrite)


    except KeyboardInterrupt:
        traceback.print_exc()
        progress.terminate()
        sys.exit(1)
    except Exception:
        traceback.print_exc()
        progress.terminate()
        sys.exit(1)
コード例 #2
0
def train(args):
    option = default_option()

    # predefined model names
    pathname, basename = os.path.split(args.model)
    modelname = get_filename(basename)
    autoname_format = os.path.join(pathname,
                                   modelname + ".iter{epoch}-{batch}.pkl")
    bestname = os.path.join(pathname, modelname + ".best.pkl")

    # load models
    if os.path.exists(args.model):
        opt, params = load_model(args.model)
        override(option, opt)
        init = False
    else:
        init = True

    if args.initialize:
        pretrain_params = load_model(args.initialize)
        pretrain_params = pretrain_params[1]
        pretrain = True
    else:
        pretrain = False

    override(option, args_to_dict(args))

    # check external validation script
    ext_val_script = option['ext_val_script']
    if not os.path.exists(ext_val_script):
        raise ValueError('File doesn\'t exist: %s' % ext_val_script)
    elif not os.access(ext_val_script, os.X_OK):
        raise ValueError('File is not executable: %s' % ext_val_script)
    # check references format
    ref_stem = None
    if option['validation'] and option['references']:
        ref_stem = misc.infer_ref_stem([option['validation']],
                                       option['references'])
        ref_stem = ref_stem[0]

    # .yaml for ultimate options
    yaml_name = "%s.settings.yaml" % modelname
    if init or not os.path.exists(yaml_name):
        with open(yaml_name, "w") as w:
            _opt = args.__dict__.copy()
            for k, v in _opt.iteritems():
                if k in option:
                    _opt[k] = option[k]
            yaml.dump(_opt, w, default_flow_style=False)
            del _opt

    print_option(option)

    # reader
    batch = option["batch"]
    sortk = option["sort"]
    shuffle = option["shuffle"]
    reader = textreader(option["corpus"], shuffle)
    processor = [data_length, data_length]

    stream = textiterator(reader, [batch, batch * sortk], processor,
                          option["limit"], option["sort"])

    # progress
    # initialize before building model
    progress = Progress(option["delay_val"], stream, option["seed"])

    # create model
    regularizer = []

    if option["l1_scale"]:
        regularizer.append(ops.l1_regularizer(option["l1_scale"]))

    if option["l2_scale"]:
        regularizer.append(ops.l2_regularizer(option["l2_scale"]))

    scale = option["scale"]
    initializer = ops.random_uniform_initializer(-scale, scale)
    regularizer = ops.sum_regularizer(regularizer)

    option["scope"] = "rnnsearch"

    model = build_model(initializer=initializer,
                        regularizer=regularizer,
                        **option)

    variables = None

    if pretrain:
        print "using pretrain"
        _pp1 = {}
        for name, val in pretrain_params:
            names = name.split('/')[1:]
            if "embedding" in names[0]:
                _pp1['/'.join(names)] = val
            else:
                _pp1['/'.join(names[1:])] = val
        matched = []
        not_matched = []
        for var in ops.trainable_variables():
            names = var.name.split('/')[1:]
            if "decoder2" in var.name:
                not_matched.append((var.name, var.get_value().size))
                continue

            if "embedding" in names[0]:
                match_name = '/'.join(names)
                var.set_value(_pp1[match_name])
            else:
                match_name = '/'.join(names[1:])
                var.set_value(_pp1[match_name])
            matched.append((var.name, var.get_value().size))
        print "------------------- matched -------------------"
        for name, size in matched:
            print name, size
        print "------------------- not matched -------------------"
        for name, size in not_matched:
            print name, size
        print "------------------- end -------------------\n"

    if not init:
        set_variables(ops.trainable_variables(), params)

    print "parameters: %d\n" % count_parameters(ops.trainable_variables())

    # tuning option
    tune_opt = {}
    tune_opt["algorithm"] = option["optimizer"]
    tune_opt["constraint"] = ("norm", option["norm"])
    tune_opt["norm"] = True
    tune_opt["variables"] = variables

    # create optimizer
    scopes = [".*"]

    trainer = optimizer(model.inputs, model.outputs, model.cost, scopes,
                        **tune_opt)

    # vocabulary and special symbol
    svocabs, tvocabs = option["vocabulary"]
    svocab, isvocab = svocabs
    tvocab, itvocab = tvocabs
    unk_sym = option["unk"]
    eos_sym = option["eos"]

    alpha = option["alpha"]

    maxepoch = option["maxepoch"]

    # restore right before training to avoid randomness changing when trying to resume progress
    if not args.reset:
        if "#progress" in option:
            print 'Restore progress >>'
            progress = (option["#progress"])
            stream = progress.iterator
            stream.set_processor(processor)
            for ttt in progress.task_manager.tasks:
                ttt.status = 4
                ttt.result = 0.0
        else:
            print 'New progress >>'
    else:
        print 'Discard progress >>'

    # setup progress
    progress.oldname = args.model
    progress.serializer = serialize

    stream = progress.iterator
    overwrite = not args.no_overwrite

    if progress.task_manager:
        print progress.task_manager

    try:
        while progress.epoch < maxepoch:
            epc = progress.epoch
            for data in stream:
                progress.tic()
                if progress.failed():
                    raise RuntimeError("progress failure")
                xdata, xmask = convert_data(data[0], svocab, unk_sym, eos_sym)
                ydata, ymask = convert_data(data[1], tvocab, unk_sym, eos_sym)
                bydata, _ = convert_data(data[1], tvocab, unk_sym, eos_sym,
                                         True)

                t1 = time.time()
                tot_cost, soft_cost, true_cost, norm = trainer.optimize(
                    xdata, xmask, ydata, ymask, bydata)
                trainer.update(alpha=alpha)
                t2 = time.time()

                # per word cost
                w_cost = true_cost * ymask.shape[1] / ymask.sum()

                progress.batch_count += 1
                progress.batch_total += 1
                progress.loss_hist.append(w_cost)

                count = progress.batch_count

                if not args.pfreq or count % args.pfreq == 0:
                    print epc + 1, progress.batch_count, w_cost, tot_cost, soft_cost, true_cost, norm, t2 - t1

                if count % option["vfreq"] == 0 and not should_skip_val(
                        args.skip_val, option["vfreq"], epc,
                        progress.batch_total):
                    if option["validation"] and option["references"]:
                        progress.add_valid(option['scope'],
                                           option['validation'], ref_stem,
                                           ext_val_script, __file__, option,
                                           modelname, bestname, serialize)

                # save after validation
                progress.toc()
                if count % option["freq"] == 0:
                    progress.save(option, autoname_format, overwrite)

                progress.tic()
                if count % option["sfreq"] == 0:
                    n = len(data[0])
                    ind = numpy.random.randint(0, n)
                    sdata = data[0][ind]
                    tdata = data[1][ind]
                    xdata = xdata[:, ind:ind + 1]
                    xmask = xmask[:, ind:ind + 1]
                    hls = beamsearch(model, xdata, xmask)
                    best, score = hls[0]
                    print "--", sdata
                    print "--", tdata
                    print "--", " ".join(best[:-1])
                progress.toc()
            print "--------------------------------------------------"
            progress.tic()
            if option["validation"] and option["references"]:
                progress.add_valid(option['scope'], option['validation'],
                                   ref_stem, ext_val_script, __file__, option,
                                   modelname, bestname, serialize)
            print "--------------------------------------------------"

            progress.toc()
            # early stopping
            if epc + 1 >= option["stop"]:
                alpha = alpha * option["decay"]

            stream.reset()

            progress.epoch += 1
            progress.batch_count = 0
            # update autosave
            option["alpha"] = alpha
            progress.save(option, autoname_format, overwrite)

        stream.close()

        progress.tic()
        print "syncing ..."
        progress.barrier()  # hangup and wait
        progress.toc()

        best_valid = max(progress.valid_hist, key=lambda item: item[1])
        (epc, count), score = best_valid

        print "best bleu {}-{}: {:.4f}".format(epc + 1, count, score)

        if progress.delay_val:
            task_elapse = sum(
                [task.elapse for task in progress.task_manager.tasks])
            print "training finished in {}({})".format(
                datetime.timedelta(seconds=int(progress.elapse)),
                datetime.timedelta(seconds=int(progress.elapse + task_elapse)))
        else:
            print "training finished in {}".format(
                datetime.timedelta(seconds=int(progress.elapse)))
        progress.save(option, autoname_format, overwrite)

    except KeyboardInterrupt:
        traceback.print_exc()
        progress.terminate()
        sys.exit(1)
    except Exception:
        traceback.print_exc()
        progress.terminate()
        sys.exit(1)
コード例 #3
0
def train(args):
    option = default_option()

    # predefined model names
    pathname, basename = os.path.split(args.model)
    modelname = get_filename(basename)
    autoname = os.path.join(pathname, modelname + ".autosave.pkl")
    bestname = os.path.join(pathname, modelname + ".best.pkl")

    # load models
    if os.path.exists(args.model):
        opt, params = load_model(args.model)
        option = opt
        init = False
    else:
        init = True

    if args.initialize:
        init_params = load_model(args.initialize)
        init_params = init_params[1]
        restore = True
    else:
        restore = False

    override(option, args_to_dict(args))
    print_option(option)

    # load references
    if option["references"]:
        references = load_references(option["references"])
    else:
        references = None

    if args.skip_val:
        references = None

    criterion = option["criterion"]

    if criterion == "mrt":
        sys.stderr.write("warning: In MRT mode, batch is set to 1\n")

    # input corpus
    batch = option["batch"] if criterion == "mle" else 1
    sortk = option["sort"] or 1 if criterion == "mle" else 1
    shuffle = option["seed"] if option["shuffle"] else None
    reader = textreader(option["corpus"], shuffle)
    processor = [data_length, data_length]
    stream = textiterator(reader, [batch, batch * sortk], processor,
                          option["limit"], option["sort"])

    if shuffle and option["indices"] is not None:
        reader.set_indices(option["indices"])

    if args.reset:
        option["count"] = [0, 0]
        option["epoch"] = 0
        option["cost"] = 0.0

    skip_stream(reader, option["count"][1])
    epoch = option["epoch"]
    maxepoch = option["maxepoch"]

    # create model
    regularizer = []

    if option["l1_scale"]:
        regularizer.append(ops.l1_regularizer(option["l1_scale"]))

    if option["l2_scale"]:
        regularizer.append(ops.l2_regularizer(option["l2_scale"]))

    scale = option["scale"]
    initializer = ops.random_uniform_initializer(-scale, scale)
    regularizer = ops.sum_regularizer(regularizer)
    # set seed
    numpy.random.seed(option["seed"])
    model = rnnsearch(initializer=initializer, regularizer=regularizer,
                      **option)

    variables = None

    if restore:
        matched, not_matched = match_variables(ops.trainable_variables(),
                                               init_params)
        if args.finetune:
            variables = not_matched
            if not variables:
                raise RuntimeError("no variables to finetune")

    if not init:
        set_variables(ops.trainable_variables(), params)

    if restore:
        restore_variables(matched, not_matched)

    print "parameters:", count_parameters(ops.trainable_variables())

    # tuning option
    tune_opt = {}
    tune_opt["algorithm"] = option["optimizer"]
    tune_opt["constraint"] = ("norm", option["norm"])
    tune_opt["norm"] = True
    tune_opt["variables"] = variables

    # create optimizer
    trainer = optimizer(model, **tune_opt)

    # beamsearch option
    search_opt = {}
    search_opt["beamsize"] = option["beamsize"]
    search_opt["normalize"] = option["normalize"]
    search_opt["maxlen"] = option["maxlen"]
    search_opt["minlen"] = option["minlen"]

    # vocabulary and special symbol
    svocabs, tvocabs = option["vocabulary"]
    svocab, isvocab = svocabs
    tvocab, itvocab = tvocabs
    unk_sym = option["unk"]
    eos_sym = option["eos"]

    # summary
    count = option["count"][0]
    totcost = option["cost"]
    best_score = option["bleu"]
    alpha = option["alpha"]
    sharp = option["sharp"]

    for i in range(epoch, maxepoch):
        for data in stream:
            xdata, xmask = convert_data(data[0], svocab, unk_sym, eos_sym)
            ydata, ymask = convert_data(data[1], tvocab, unk_sym, eos_sym)

            if criterion == "mrt":
                refs = []

                for item in data[1]:
                    item = item.split()
                    item = [unk_sym if word not in tvocab else word
                            for word in item]
                    refs.append(" ".join(item))

                t1 = time.time()

                # sample from model
                nsample = option["sample"] - len(refs)
                xdata = numpy.repeat(xdata, nsample, 1)
                xmask = numpy.repeat(xmask, nsample, 1)
                maxlen = int(1.5 * len(ydata))
                examples = batchsample(model, xdata, xmask, maxlen)
                space = build_sample_space(refs, examples)
                score = numpy.zeros((len(space),), "float32")

                refs = [ref.split() for ref in refs]

                for j in range(len(space)):
                    example = space[j].split()
                    score[j] = 1.0 - bleu([example], [refs], smoothing=True)

                ydata, ymask = convert_data(space, tvocab, unk_sym, eos_sym)
                cost, norm = trainer.optimize(xdata[:, 0:1], xmask[:, 0:1],
                                              ydata, ymask, score, sharp)
                trainer.update(alpha=alpha)
                t2 = time.time()

                totcost += cost
                count += 1
                t = t2 - t1
                ac = totcost / count
                print i + 1, count, len(space), cost, norm, ac, t
            else:
                t1 = time.time()
                cost, norm = trainer.optimize(xdata, xmask, ydata, ymask)
                trainer.update(alpha = alpha)
                t2 = time.time()

                count += 1
                cost = cost * ymask.shape[1] / ymask.sum()
                totcost += cost / math.log(2)
                print i + 1, count, cost, norm, t2 - t1

            # autosave
            if count % option["freq"] == 0:
                option["indices"] = reader.get_indices()
                option["bleu"] = best_score
                option["cost"] = totcost
                option["count"] = [count, reader.count]
                serialize(autoname, option)

            if count % option["vfreq"] == 0:
                if option["validation"] and references:
                    trans = translate(model, option["validation"],
                                      **search_opt)
                    bleu_score = bleu(trans, references)
                    print "bleu: %2.4f" % bleu_score
                    if bleu_score > best_score:
                        best_score = bleu_score
                        option["indices"] = reader.get_indices()
                        option["bleu"] = best_score
                        option["cost"] = totcost
                        option["count"] = [count, reader.count]
                        serialize(bestname, option)

            if count % option["sfreq"] == 0:
                n = len(data[0])
                ind = numpy.random.randint(0, n)
                sdata = data[0][ind]
                tdata = data[1][ind]
                xdata = xdata[:, ind : ind + 1]
                xmask = xmask[:, ind : ind + 1]
                hls = beamsearch(model, xdata, xmask)
                best, score = hls[0]
                print sdata
                print tdata
                print " ".join(best[:-1])


        print "--------------------------------------------------"

        if option["validation"] and references:
            trans = translate(model, option["validation"], **search_opt)
            bleu_score = bleu(trans, references)
            print "iter: %d, bleu: %2.4f" % (i + 1, bleu_score)
            if bleu_score > best_score:
                best_score = bleu_score
                option["indices"] = reader.get_indices()
                option["bleu"] = best_score
                option["cost"] = totcost
                option["count"] = [count, reader.count]
                serialize(bestname, option)

        print "averaged cost: ", totcost / count
        print "--------------------------------------------------"

        # early stopping
        if i + 1 >= option["stop"]:
            alpha = alpha * option["decay"]

        count = 0
        totcost = 0.0
        stream.reset()

        # update autosave
        option["epoch"] = i + 1
        option["alpha"] = alpha
        option["indices"] = reader.get_indices()
        option["bleu"] = best_score
        option["cost"] = totcost
        option["count"] = [0, 0]
        serialize(autoname, option)

    print "best(bleu): %2.4f" % best_score

    stream.close()