コード例 #1
0
def build_discriminator(image, mbd=False, sparsity=False, sparsity_mbd=False):
    """ Generator sub-component for the CaloGAN

    Args:
    -----
        image: keras tensor of 4 dimensions (i.e. the output of one calo layer)
        mdb: bool, perform feature level minibatch discrimination
        sparsiry: bool, whether or not to calculate and include sparsity
        sparsity_mdb: bool, perform minibatch discrimination on the sparsity
            values in a batch

    Returns:
    --------
        a keras tensor of features

    """

    x = Conv2D(64, (2, 2), padding='same')(image)
    x = LeakyReLU()(x)

    x = ZeroPadding2D((1, 1))(x)
    x = LocallyConnected2D(16, (3, 3), padding='valid', strides=(1, 2))(x)
    x = LeakyReLU()(x)
    x = BatchNormalization()(x)

    x = ZeroPadding2D((1, 1))(x)
    x = LocallyConnected2D(8, (2, 2), padding='valid')(x)
    x = LeakyReLU()(x)
    x = BatchNormalization()(x)

    x = ZeroPadding2D((1, 1))(x)
    x = LocallyConnected2D(8, (2, 2), padding='valid', strides=(1, 2))(x)
    x = LeakyReLU()(x)
    x = BatchNormalization()(x)

    x = Flatten()(x)

    if mbd or sparsity or sparsity_mbd:
        minibatch_featurizer = Lambda(minibatch_discriminator,
                                      output_shape=minibatch_output_shape)

        features = [x]
        nb_features = 10
        vspace_dim = 10

        # creates the kernel space for the minibatch discrimination
        if mbd:
            K_x = Dense3D(nb_features, vspace_dim)(x)
            features.append(Activation('tanh')(minibatch_featurizer(K_x)))

        if sparsity or sparsity_mbd:
            sparsity_detector = Lambda(sparsity_level, sparsity_output_shape)
            empirical_sparsity = sparsity_detector(image)
            if sparsity:
                features.append(empirical_sparsity)
            if sparsity_mbd:
                K_sparsity = Dense3D(nb_features,
                                     vspace_dim)(empirical_sparsity)
                features.append(
                    Activation('tanh')(minibatch_featurizer(K_sparsity)))

        return concatenate(features)
    else:
        return x
コード例 #2
0
    features = concatenate(features)

    # This is a (None, 3) tensor with the individual energy per layer
    energies = concatenate(energies)

    # calculate the total energy across all rows
    total_energy = Lambda(lambda x: K.reshape(K.sum(x, axis=-1), (-1, 1)),
                          name='total_energy')(energies)

    # construct MBD on the raw energies
    nb_features = 10
    vspace_dim = 10
    minibatch_featurizer = Lambda(minibatch_discriminator,
                                  output_shape=minibatch_output_shape)
    K_energy = Dense3D(nb_features, vspace_dim)(energies)

    # constrain w/ a tanh to dampen the unbounded nature of energy-space
    mbd_energy = Activation('tanh')(minibatch_featurizer(K_energy))

    # absolute deviation away from input energy. Technically we can learn
    # this, but since we want to get as close as possible to conservation of
    # energy, just coding it in is better
    energy_well = Lambda(lambda x: K.abs(x[0] - x[1]))(
        [total_energy, input_energy])

    # binary y/n if it is over the input energy
    well_too_big = Lambda(lambda x: 10 * K.cast(x > 5, K.floatx()))(
        energy_well)

    p = concatenate([