コード例 #1
0
    def generate(self, z_var, pg=1, t=False, alpha_trans=0.0):
        with tf.variable_scope('generator') as scope:

            de = tf.reshape(Pixl_Norm(z_var), [self.batch_size, 1, 1, int(self.get_nf(1))])
            de = conv2d(de, output_dim=self.get_nf(1), k_h=4, k_w=4, d_w=1, d_h=1, use_wscale=self.use_wscale, gain=np.sqrt(2)/4, padding='Other', name='gen_n_1_conv')
            de = Pixl_Norm(lrelu(de))
            de = tf.reshape(de, [self.batch_size, 4, 4, int(self.get_nf(1))])
            de = conv2d(de, output_dim=self.get_nf(1), d_w=1, d_h=1, use_wscale=self.use_wscale, name='gen_n_2_conv')
            de = Pixl_Norm(lrelu(de))

            for i in range(pg - 1):
                if i == pg - 2 and t:
                    #To RGB
                    de_iden = conv2d(de, output_dim=2, k_w=1, k_h=1, d_w=1, d_h=1, use_wscale=self.use_wscale,
                                     name='gen_y_rgb_conv_{}'.format(de.shape[1]))
                    de_iden = upscale(de_iden, 2)

                de = upscale(de, 2)
                de = Pixl_Norm(lrelu(
                    conv2d(de, output_dim=self.get_nf(i + 1), d_w=1, d_h=1, use_wscale=self.use_wscale, name='gen_n_conv_1_{}'.format(de.shape[1]))))
                de = Pixl_Norm(lrelu(
                    conv2d(de, output_dim=self.get_nf(i + 1), d_w=1, d_h=1, use_wscale=self.use_wscale, name='gen_n_conv_2_{}'.format(de.shape[1]))))

            #To RGB
            de = conv2d(de, output_dim=2, k_w=1, k_h=1, d_w=1, d_h=1, use_wscale=self.use_wscale, gain=1, name='gen_y_rgb_conv_{}'.format(de.shape[1]))
            if pg == 1: return de
            if t: de = (1 - alpha_trans) * de_iden + alpha_trans*de
            else: de = de

            return de
コード例 #2
0
ファイル: PGGAN.py プロジェクト: nthiruve/pggan_253
    def generate(self, z_var, t_text_embedding, pg=1, t=False, alpha_trans=0.0):
        
        with tf.variable_scope('generator') as scope:
            reduced_text_embedding = lrelu( linear(t_text_embedding, self.tdim, 'g_embeddings') )
            z_concat = tf.concat([z_var,reduced_text_embedding], 1)
            de = tf.reshape(z_concat, [self.batch_size, 1, 1, tf.cast(self.get_nf(1),tf.int32)])

            de = conv2d(de, output_dim= self.get_nf(1), k_h=4, k_w=4, d_w=1, d_h=1, padding='Other', name='gen_n_1_conv')
            de = Pixl_Norm(lrelu(de))
            de = tf.reshape(de, [self.batch_size, 4, 4, tf.cast(self.get_nf(1),tf.int32)])
            de = conv2d(de, output_dim=self.get_nf(1), d_w=1, d_h=1, name='gen_n_2_conv')
            de = Pixl_Norm(lrelu(de))

            for i in range(pg - 1):

                if i == pg - 2 and t:
                    #To RGB
                    de_iden = conv2d(de, output_dim=3, k_w=1, k_h=1, d_w=1, d_h=1,
                                     name='gen_y_rgb_conv_{}'.format(de.shape[1]))
                    de_iden = upscale(de_iden, 2)

                de = upscale(de, 2)
                de = Pixl_Norm(lrelu(
                    conv2d(de, output_dim=self.get_nf(i + 1), d_w=1, d_h=1, name='gen_n_conv_1_{}'.format(de.shape[1]))))
                de = Pixl_Norm(lrelu(
                    conv2d(de, output_dim=self.get_nf(i + 1), d_w=1, d_h=1, name='gen_n_conv_2_{}'.format(de.shape[1]))))

            #To RGB
            de = conv2d(de, output_dim=3, k_w=1, k_h=1, d_w=1, d_h=1, name='gen_y_rgb_conv_{}'.format(de.shape[1]))

            if pg == 1:
                return de

            if t:
                de = (1 - alpha_trans) * de_iden + alpha_trans*de

            else:
                de = de

            return de   #tanh given in text to image code. will this work?
コード例 #3
0
    def generate(self, z_var, pg=1, t=False, alpha_trans=0.0):

        with tf.variable_scope('generator') as scope:
            # 
            de = tf.reshape(Pixl_Norm(z_var), [self.batch_size, 1, 1, int(self.get_nf(1))])
            de = conv2d(de, output_dim=self.get_nf(1), k_h=4, k_w=4, d_w=1, d_h=1, use_wscale=self.use_wscale, gain=np.sqrt(2)/4, padding='Other', name='gen_n_1_conv')
            de = Pixl_Norm(lrelu(de))
            de = tf.reshape(de, [self.batch_size, 4, 4, int(self.get_nf(1))])
            de = conv2d(de, output_dim=self.get_nf(1), d_w=1, d_h=1, use_wscale=self.use_wscale, name='gen_n_2_conv')
            de = Pixl_Norm(lrelu(de))

            # pg 代表当前 pixel 上升至哪个档位
            # pg=1,即第一层的training不需要进入,不需要提升pixel并进行一系列操作
            for i in range(pg - 1):
                # t 代表是否进行training,如果进行training则进行下述操作
                # 最后一层循环,进入
                if i == pg - 2 and t:
                    # To RGB
                    de_iden = conv2d(de, output_dim=3, k_w=1, k_h=1, d_w=1, d_h=1, use_wscale=self.use_wscale,
                                     name='gen_y_rgb_conv_{}'.format(de.shape[1]))
                    de_iden = upscale(de_iden, 2)

                de = upscale(de, 2)
                de = Pixl_Norm(lrelu(
                    conv2d(de, output_dim=self.get_nf(i + 1), d_w=1, d_h=1, use_wscale=self.use_wscale, name='gen_n_conv_1_{}'.format(de.shape[1]))))
                de = Pixl_Norm(lrelu(
                    conv2d(de, output_dim=self.get_nf(i + 1), d_w=1, d_h=1, use_wscale=self.use_wscale, name='gen_n_conv_2_{}'.format(de.shape[1]))))

            # To RGB
            de = conv2d(de, output_dim=3, k_w=1, k_h=1, d_w=1, d_h=1, use_wscale=self.use_wscale, gain=1, name='gen_y_rgb_conv_{}'.format(de.shape[1]))

            if pg == 1: return de
            # 如果是training,通过 alpha_trans 来调控和线性组合图片
            if t: 
                de = (1 - alpha_trans) * de_iden + alpha_trans*de
            else: 
                de = de

            return de
コード例 #4
0
    def generate(self, z_var, pg=1, t=False, alpha_trans=0.0):

        with tf.variable_scope('generator') as scope:
            # latent vector(batch_size, 512)를 (batch_size, 1, 1, 512)로 바꿈
            de = tf.reshape(
                z_var,
                [self.batch_size, 1, 1,
                 tf.cast(self.get_nf(1), tf.int32)])
            de = conv2d(de,
                        output_dim=self.get_nf(1),
                        k_h=4,
                        k_w=4,
                        d_w=1,
                        d_h=1,
                        padding='Other',
                        name='gen_n_1_conv')
            de = Pixl_Norm(lrelu(de))
            # [batch size, 4, 4, 512]로 바꿈
            de = tf.reshape(
                de, [self.batch_size, 4, 4,
                     tf.cast(self.get_nf(1), tf.int32)])
            de = conv2d(de,
                        output_dim=self.get_nf(1),
                        d_w=1,
                        d_h=1,
                        name='gen_n_2_conv')
            de = Pixl_Norm(lrelu(de))

            #pg=2일때 i=0, for문 1번 실행
            #pg=3일때 i=0,1 for문 2번 실행
            for i in range(pg - 1):
                #pg=2이고 i=0, t=True일때 실행
                #pg=2이고 i=0, t=False일때 실행 x
                #pg=3이고 i=0, t=True 실행x
                #pg=3이고 i=1, t=True 실행
                if i == pg - 2 and t:
                    #To RGB
                    # 논문에선 upscale을 먼저하고 conv2d(toRGB)를 하도록 되어 있는데 텐서플로우 변수 이름의 중복때문에 어쩔수 없이 conv를 먼저
                    de_iden = conv2d(de,
                                     output_dim=3,
                                     k_w=1,
                                     k_h=1,
                                     d_w=1,
                                     d_h=1,
                                     name='gen_y_rgb_conv_{}'.format(
                                         de.shape[1]))
                    de_iden = upscale(de_iden, 2)

                de = upscale(de, 2)
                # i=0일때 get_nf(0+1) = 512
                # i=1일때 get_ng(1+1) = 256
                de = Pixl_Norm(
                    lrelu(
                        conv2d(de,
                               output_dim=self.get_nf(i + 1),
                               d_w=1,
                               d_h=1,
                               name='gen_n_conv_1_{}'.format(de.shape[1]))))
                de = Pixl_Norm(
                    lrelu(
                        conv2d(de,
                               output_dim=self.get_nf(i + 1),
                               d_w=1,
                               d_h=1,
                               name='gen_n_conv_2_{}'.format(de.shape[1]))))

            #To RGB
            de = conv2d(de,
                        output_dim=3,
                        k_w=1,
                        k_h=1,
                        d_w=1,
                        d_h=1,
                        name='gen_y_rgb_conv_{}'.format(de.shape[1]))

            if pg == 1:
                return de
            # transition이 True일때
            if t:
                de = (1 - alpha_trans) * de_iden + alpha_trans * de

            else:
                de = de

            return de
コード例 #5
0
def generator(hparams, z_var, train, reuse):
    with tf.variable_scope("generator") as scope:
        if reuse:
            tf.get_variable_scope().reuse_variables()

        use_wscale = True
        de = tf.reshape(Pixl_Norm(z_var), [hparams.batch_size, 1, 1, 128])
        de = conv2d(de, output_dim=128, k_h=4, k_w=4, d_w=1, d_h=1, use_wscale=use_wscale, gain=np.sqrt(2)/4, padding='Other', name='gen_n_1_conv')
        de = Pixl_Norm(lrelu(de))
        de = tf.reshape(de, [hparams.batch_size, 4, 4, 128])
        de = conv2d(de, output_dim=128, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_2_conv')
        de = Pixl_Norm(lrelu(de))

        de = upscale(de, 2)
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=128, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_1_8')))
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=128, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_2_8')))
        
        de = upscale(de, 2)
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=64, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_1_16')))
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=64, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_2_16')))
        
        de = upscale(de, 2)
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=32, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_1_32')))
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=32, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_2_32')))
            
        de_iden = conv2d(de, output_dim=2, k_w=1, k_h=1, d_w=1, d_h=1, use_wscale=use_wscale,name='gen_y_rgb_conv_32')
        de_iden = upscale(de_iden, 2)
            
            
        de = upscale(de, 2)
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=16, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_1_64')))
        de = Pixl_Norm(lrelu(conv2d(de, output_dim=16, d_w=1, d_h=1, use_wscale=use_wscale, name='gen_n_conv_2_64')))
        
        de = conv2d(de, output_dim=2, k_w=1, k_h=1, d_w=1, d_h=1, use_wscale=use_wscale, gain=1, name='gen_y_rgb_conv_64')
        
        return de