def verify_upsampling(): batch = IntIter(list_constraint([1, 4, 8, 16])) channel = IntIter(list_constraint([1, 3, 4])) h = IntIter(range_constraint(1, 9, 3)) w = IntIter(range_constraint(1, 9, 3)) dshp = opg.ExtendIter(batch, channel, h, w) datas = [] for i in range(len(dshp)): size = np.product(dshp[i]) arr1 = ConstantIter(rand_constraint(-127, 127, size), shape=dshp[i]) arr2 = ConstantIter(rand_constraint(0, 127, size), shape=dshp[i]) datas.extend([arr1, arr2]) data = ConcatIter(*datas) scale = IntIter(iter_constraint(3), name="scale") def upsampling(data, scale): if scale == 0: raise ValueError("scale must > 0 vs. " + str(scale)) a_np = np.array(data) b_np = topi.testing.upsampling_python(a_np, scale, "NCHW") return [b_np] op_units = opg.OpUnitIter([data, scale], 1) op_units.eval_data("upsampling", upsampling, is_dump=True)
def verify_dense(): batch = IntIter(list_constraint([1, 4, 8, 16])) channel = IntIter(list_constraint([1, 3, 32, 64])) dshp = opg.ExtendIter(batch, channel) datas = [] for i in range(len(dshp)): size = np.product(dshp[i]) arr1 = ConstantIter(rand_constraint(-127, 127, size), shape=dshp[i]) arr2 = ConstantIter(rand_constraint(0, 127, size), shape=dshp[i]) arr3 = ConstantIter(rand_constraint(1, 127, size), shape=dshp[i]) datas.extend([arr1, arr2, arr3]) data = ConcatIter( *datas, ConstantIter(rand_constraint(-127, 127, 112), shape=(4, 4, 7))) print(len(data)) units = IntIter(list_constraint([1, 32, 64]), name="units") use_bias = BoolIter(name="use_bias") op_units = opg.OpUnitIter([data, units, use_bias], 1) for i in range(len(op_units)): data, units, use_bias = op_units[i] data_nd = nd.array(data) batch, ic = data_nd.shape[:2] wshp = (units, ic) wsize = np.product(wshp) weight = ConstantIter(rand_constraint(-127, 127, wsize), shape=wshp) weight_nd = nd.array(weight[0]) bshp = (units, ) bias = ConstantIter(rand_constraint(-127, 127, units), shape=bshp) bias_nd = nd.array(bias[0]) attr = { 'units': units, 'use_bias': use_bias, } ins = [data_nd, weight_nd, bias_nd ] if use_bias else [data_nd, weight_nd] outs, err = None, None try: if use_bias: out = nd.FullyConnected(data_nd, weight_nd, bias_nd, units, (not use_bias)) else: out = nd.FullyConnected(data_nd, weight_nd, None, units, (not use_bias)) outs = [out] except Exception as e: err = "Error:\n" + str(e) print(data_nd.shape, wshp, bshp, attr, outs[0].shape if outs else None, err.replace("\n", "") if err else None) opg.dump("dense", attr, ins, outs, err)
def verify_non_max_suppression(): # batch = np.random.randint(low=1, high=10) # n = np.random.randint(low=10, high=11) # k = 6 # dshape = (batch, n, k) # data = tvm.placeholder(dshape, name="data") # valid_count = tvm.placeholder((dshape[0],), dtype="int32", name="valid_count") # nms_threshold = np.random.randint(low=1, high=10) # force_suppress = True if np.random.randint(low=0, high=1) == 1 else False # nms_topk = np.random.randint(low=1, high=9) # params = {'iou_threshold':nms_threshold*10, 'coord_start':2, 'score_index':1, 'id_index':0, # 'force_suppress':force_suppress, 'top_k': nms_topk, 'return_indices':False} # save_dict(params, case_dir + '/attr.txt') # np_data = np.random.randint(low=-(2**31-1), high=(2**31-1), size=dshape).astype(data.dtype) # np_valid_count = np.random.randint(low=1, high=10, size=(batch)).astype(valid_count.dtype) # device = 'llvm' # ctx = tvm.context(device, 0) # with tvm.target.create(device): # out = non_max_suppression(data, valid_count, -1, nms_threshold, force_suppress, nms_topk, return_indices=False) # s = topi.generic.schedule_nms(out) # tvm_data = tvm.nd.array(np_data, ctx) # tvm_valid_count = tvm.nd.array(np_valid_count, ctx) # save_txt(tvm_data, case_dir + "/in_0.txt") # save_txt(tvm_valid_count, case_dir + "/in_1.txt") # tvm_out = tvm.nd.array(np.zeros(dshape, dtype=data.dtype), ctx) # f = tvm.build(s, [data, valid_count, out], device) # f(tvm_data, tvm_valid_count, tvm_out) # save_txt(tvm_out, case_dir + "/out_0.txt") batch = IntIter(range_constraint(1, 2)) n = IntIter(rand_constraint(1, 32, 40)) k = IntIter(list_constraint([6])) dshp = opg.ExtendIter(batch, n, k) datas = [] for i in range(len(dshp)): shp = dshp[i] data = [] for n in range(shp[1]): elem = rand_constraint(-20, 20, 6)() elem[0] = random.randint(-1, 10) data.append(elem) datas.append([[data]]) data = ConcatIter(*datas) valid_count = RandomVectorIter(1, 32, 1, 10) iou = ConcatIter(IntIter(rand_constraint(0, 100, 20)), IntIter(list_constraint([110])), name="iou_threshold") force_suppress = BoolIter(name="force_suppress") top_k = ConcatIter(IntIter(list_constraint([-1])), IntIter(rand_constraint(1, 32, 6)), name="top_k") id_index = IntIter(list_constraint([0]), name="id_index") score_index = IntIter(list_constraint([1]), name="score_index") coord_start = IntIter(list_constraint([2]), name="coord_start") max_output_size = ConcatIter(IntIter(list_constraint([-1])), IntIter(rand_constraint(1, 32, 6)), name="max_output_size") return_indices = BoolIter(const=False, name="return_indices") invalid_to_bottom = BoolIter(const=True, name="invalid_to_bottom") inputs = [ data, valid_count, iou, force_suppress, top_k, id_index, score_index, coord_start, max_output_size, return_indices, invalid_to_bottom ] def cstr_func(data, valid_count, *args): data_np = np.array([data]) count = valid_count[0] if count > data_np.shape[1]: return False return True op_units = opg.OpUnitIter([ data, valid_count, iou, force_suppress, top_k, id_index, score_index, coord_start, max_output_size, return_indices, invalid_to_bottom ], 2, [cstr_func]) def non_max_suppression(data, valid_count, iou, force_suppress, top_k, id_index, score_index, coord_start, max_output_size, return_indices, invalid_to_bottom): device = 'llvm' ctx = tvm.context(device, 0) data_np, valid_count_np = np.array(data, dtype="float32"), np.array( valid_count, dtype="int32") data_nd, valid_count_nd = tvm.nd.array(data_np, ctx), tvm.nd.array( valid_count_np, ctx) dshp = data_nd.shape data_tvm = tvm.placeholder(dshp, name="data", dtype="float32") valid_count_tvm = tvm.placeholder((dshp[0], ), dtype="int32", name="valid_count") with tvm.target.create(device): out = topi.vision.non_max_suppression(data_tvm, valid_count_tvm, max_output_size, iou / 100, force_suppress, top_k, coord_start, score_index, id_index, return_indices, invalid_to_bottom) s = topi.generic.schedule_nms(out) out_nd = tvm.nd.array(np.zeros(dshp, dtype=data_tvm.dtype), ctx) f = tvm.build(s, [data_tvm, valid_count_tvm, out], device) f(data_nd, valid_count_nd, out_nd) return [out_nd.asnumpy()] op_units.eval_data("non_max_suppression", non_max_suppression, True)
def verify_max_pool2d(): batch = IntIter(list_constraint([1, 4])) channel = IntIter(list_constraint([1, 4])) h = IntIter(range_constraint(1, 9, 3)) w = IntIter(range_constraint(1, 9, 3)) dshp = opg.ExtendIter(batch, channel, h, w) datas = [] for i in range(len(dshp)): size = np.product(dshp[i]) arr1 = ConstantIter(rand_constraint(-127, 127, size), shape=dshp[i]) arr2 = ConstantIter(rand_constraint(0, 127, size), shape=dshp[i]) datas.extend([arr1, arr2]) data = ConcatIter(*datas) print(len(data)) iattr = IntIter(range_constraint(1, 4)) pool_size = ConcatIter(RepeatIter([1, 2, 3], 2), [(2, 3), (3, 1)], name="pool_size") strides = ConcatIter(RepeatIter([1, 2], 2), [(1, 2), (2, 1)], name="strides") iattr = IntIter(iter_constraint(2)) padding = ConcatIter(VectorIter(iattr, 1), VectorIter(iattr, 2), name="padding") ceil_mode = BoolIter(name="ceil_mode") def max_pool2d(data, pool_size, strides, padding, ceil_mode): data_nd = nd.array(data) pad = padding if len(padding) == 1: pad = (padding[0], padding[0]) out = nd.Pooling(data_nd, pool_size, pool_type="max", global_pool=False, stride=strides, pad=pad) data_npy = np.array(data) ashape = data_npy.shape n, ic, ih, iw = data_npy.shape sh, sw = strides kh, kw = pool_size bshape = [n, ic, ih, iw] if len(padding) == 1: pt = pl = pb = pr = padding[0] else: pt = pb = padding[0] pl = pr = padding[1] if ceil_mode: pb += sh - 1 pr += sw - 1 pad_np = np.full((n, ic, ih + pt + pb, iw + pl + pr), -127).astype(INT32) # pad_np = np.zeros(shape=(n, ic, ih+pt+pb, iw+pl+pr)).astype(INT32) no_zero = (range(n), range(ic), (range(pt, ih + pt)), (range(pl, iw + pl))) pad_np[np.ix_(*no_zero)] = data_npy bshape[2] = int(math.floor(float(ashape[2] - kh + pt + pb) / sh) + 1) bshape[3] = int(math.floor(float(ashape[3] - kw + pl + pr) / sw) + 1) if pt >= kh or (bshape[2] - 1) * sh - pt >= ashape[2]: raise ValueError("ceil_mode exceed out of input") if pl >= kw or (bshape[3] - 1) * sw - pl >= ashape[3]: raise ValueError("ceil mode exceed out of input") _, oc, oh, ow = bshape b_np = np.zeros(shape=(n, oc, oh, ow)).astype(INT32) for i in range(oh): for j in range(ow): b_np[:, :, i, j] = np.max(pad_np[:, :, i * sh:i * sh + kh, j * sw:j * sw + kw], axis=(2, 3)) return [b_np] op_units = opg.OpUnitIter([data, pool_size, strides, padding, ceil_mode], 1) op_units.eval_data("max_pool2d", max_pool2d, is_dump=True)
def verify_conv2d(): batch = IntIter(list_constraint([1, 4, 8])) channel = IntIter(list_constraint([1, 3, 4, 8])) h = IntIter(range_constraint(1, 9, 3)) w = IntIter(range_constraint(1, 9, 3)) dshp = opg.ExtendIter(batch, channel, h, w) datas = [] for i in range(len(dshp)): size = np.product(dshp[i]) arr1 = ConstantIter(rand_constraint(-127, 127, size), shape=dshp[i]) arr2 = ConstantIter(rand_constraint(0, 127, size), shape=dshp[i]) datas.extend([arr1, arr2]) data = ConcatIter(*datas) print(len(data)) num_filter = IntIter(list_constraint([1, 16, 32]), name="num_filter") kernel = VectorIter(IntIter(list_constraint([1, 2, 3])), size=2, name="kernel_size") strides = RandomVectorIter(1, 4, 2, 1, name="strides") padding = RandomVectorIter(0, 3, 2, 1, name="padding") groups = IntIter(list_constraint([1, 2, 4]), name="groups") use_bias = RandomBoolIter(name="use_bias") op_units = opg.OpUnitIter( [data, num_filter, kernel, strides, padding, groups, use_bias], 1) for i in range(len(op_units)): data, num_filter, kernel, strides, padding, \ groups, use_bias = op_units[i] a_np = np.array(data) batch, ic, h, w = a_np.shape if groups == 1: pass elif random.randint(0, 10) < 5 and ic % groups == 0: pass else: groups = ic wshp = (num_filter, ic // groups, *kernel) wsize = np.product(wshp) weight = ConstantIter(rand_constraint(-127, 127, wsize), shape=wshp) w_np = np.array(weight[0]) bshp = (num_filter, ) bias = ConstantIter(rand_constraint(-127, 127, num_filter), shape=bshp) b_np = np.array(bias[0]) rand = random.randint(0, 100) if rand < 60: dilation = (1, 1) elif rand < 70: dilation = (1, 2) elif rand < 80: dilation = (2, 1) else: dilation = (2, 2) attr = { 'channels': num_filter, 'kernel_size': kernel, 'strides': strides, 'padding': padding, 'dilation': dilation, 'groups': groups, 'layout': "NCHW", 'kernel_layout': "OIHW", 'use_bias': use_bias, } ins = [a_np, w_np, b_np] if use_bias else [a_np, w_np] outs, err = None, None try: b_nd = nd.array(b_np) if use_bias else None _ = nd.Convolution(nd.array(a_np), nd.array(w_np), b_nd, kernel, strides, dilation, padding, num_filter, groups, no_bias=(not use_bias)) dw_np = topi.testing.dilate_python(w_np, (1, 1, *dilation)) c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, strides, padding) if use_bias: c_np += b_np.reshape(num_filter, 1, 1) outs = [c_np] except Exception as e: err = "Error:\n" + str(e) print(a_np.shape, wshp, bshp, attr, outs[0].shape if outs else None, err.replace("\n", "") if err else None) opg.dump("conv2d", attr, ins, outs, err)