コード例 #1
0
    def ssfm(f: AbstractFieldEquation, waves: np.ndarray, z: float, h: float
             ) -> np.ndarray:
        r"""Split step Fourier method.

        Parameters
        ----------
        f :
            The function to compute.
        waves :
            The value of the unknown (waves) at the considered
            space step.
        z :
            The current value of the space variable.
        h :
            The step size.

        Returns
        -------
        :
            The one step euler computation results.

        Notes
        -----

        Equations:

        .. math::
              \begin{align}
                A_j^{N} &= \exp\Big(h\hat{\mathcal{N}}\big(A_1(z,T),
                    \ldots, A_j(z,T), \ldots, A_K(z,T)\big)\Big)A_j(z,T)
                    &\forall j=1,\ldots,K\\
                A_j(z+h,T) &= \exp\big(h\mathcal{D}\big)A_j^{N} &\forall
                    j=1,\ldots,K
              \end{align}

        Implementation:

        .. math::
              \begin{align}
                A_j^{N} &= \exp\Big(h\hat{\mathcal{N}\big(A_1(z),\ldots,
                    A_j(z), \ldots, A_K(z)\big)\Big)  A_j(z) &\forall
                    j=1,\ldots,K\\
                A_j(z+h) &= \mathcal{F}^{-1}\Big\{\exp\Big(h
                    \hat{\mathcal{D}}\Big)\mathcal{F}
                    \{A_j^{N}(z)\}\Big\} &\forall j=1,\ldots,K
              \end{align}

        where :math:`K` is the number of channels.

        """
        A_N = np.zeros_like(waves)
        for i in range(len(waves)):
            A_N[i] = f.exp_term_non_lin(waves, i, z, h, waves[i])
        for i in range(len(waves)):
            waves[i] = f.exp_term_lin(A_N, i, z, h)

        return waves
コード例 #2
0
    def rk4ip(f: AbstractFieldEquation, waves: np.ndarray, z: float,
              h: float) -> np.ndarray:
        r"""Runge-Kutta interaction picture method.

        Parameters
        ----------
        f :
            The function to compute.
        waves :
            The value of the unknown (waves) at the considered
            space step.
        z :
            The current value of the space variable.
        h :
            The step size.

        Returns
        -------
        :
            The one step euler computation results.

        Notes
        -----

        Equations:

        .. math::
              \begin{align}
                A^L_j &=\exp\Big(\frac{h}{2}\mathcal{D}\Big)A_j(z,T)
                    &\forall j=1,\ldots,K\\
                k_{0,j} &=\exp\Big(\frac{h}{2}\mathcal{D}\Big) \Big(h
                    \bar{\mathcal{N}}\big(A_1(z,T), \ldots, A_j(z,T),
                    \ldots,A_K(z,T)\big)\Big) &\forall j=1,\ldots,K\\
                k_{1,j} &=h \bar{\mathcal{N}}\Big(A^L_{1}
                    + \frac{k_{0,1}}{2},\ldots, A^L_{j}
                    + \frac{k_{0,j}}{2}, \ldots, A^L_{K}
                    + \frac{k_{0,K}}{2}\Big) &\forall j=1,\ldots,K\\
                k_{2,j} &=h \bar{\mathcal{N}}\Big(A^L_{1}
                    + \frac{k_{1,1}}{2},\ldots, A^L_{j}
                    + \frac{k_{1,j}}{2}, \ldots, A^L_{K}
                    + \frac{k_{1,K}}{2}\Big) &\forall j=1,\ldots,K\\
                k_{3,j} &=h \bar{\mathcal{N}}\Big(\exp\Big(\frac{h}{2}
                    \mathcal{D}\Big)(A^L_{1} + k_{2,1}, \ldots, A^L_{j}
                    + k_{2,j}, \ldots, A^L_{K} + k_{2,K})\Big)
                    &\forall j=1,\ldots,K\\
                A_j(z+h,T) &=\frac{k_{3,j}}{6}+\exp\Big(\frac{h}{2}
                    \mathcal{D}\Big)\Big(A^L_{j}+\frac{k_{0,j}}{6}
                    +\frac{k_{1,j}}{3}+\frac{k_{2,j}}{3}\Big)
                    \quad &\forall j=1,\ldots,K
              \end{align}

        Implementation:

        .. math::
              \begin{align}
                A^L_{j} &= \mathcal{F}^{-1}\Big\{\exp\Big(\frac{h}{2}
                    \hat{\mathcal{D}}\Big)\mathcal{F}\{A_j(z)\}\Big\}
                    &\forall j=1,\ldots,K \\
                k_{0,j} &= \mathcal{F}^{-1}\Big\{\exp\Big(\frac{h}{2}
                    \hat{\mathcal{D}}\Big)\mathcal{F}\big\{h
                    \hat{\mathcal{N}}\big(A_1(z), \ldots, A_j(z),
                    \ldots,A_K(z)\big)\big\}\Big\}
                    &\forall j=1,\ldots,K\\
                k_{1,j} &= h \hat{\mathcal{N}}\Big(A^L_{1}
                    + \frac{k_{0,1}}{2}, \ldots, A^L_{j}
                    + \frac{k_{0,j}}{2}, \ldots, A^L_{K}
                    + \frac{k_{0,K}}{2} \Big) &\forall j=1,\ldots,K\\
                k_{2,j} &= h \hat{\mathcal{N}}\Big(A^L_{1}
                    + \frac{k_{1,1}}{2}, \ldots, A^L_{j}
                    + \frac{k_{1,j}}{2}, \ldots, A^L_{K}
                    + \frac{k_{1,K}}{2} \Big) &\forall j=1,\ldots,K\\
                k_{3,j} &= h \hat{\mathcal{N}}\Big(\mathcal{F}^{-1}
                    \Big\{\exp\Big(\frac{h}{2}\hat{\mathcal{D}}\Big)
                    \mathcal{F}\{A^L_{1} + k_{2,1}\}
                    \Big\} , \ldots, \nonumber \\
                    & \qquad \qquad \mathcal{F}^{-1}\Big\{\exp\Big(
                    \frac{h}{2}\hat{\mathcal{D}}\Big)\mathcal{F}
                    \{A^L_{j} + k_{2,j}\}\Big\} ,\ldots, \nonumber \\
                & \qquad \qquad \mathcal{F}^{-1}\Big\{\exp\Big(
                    \frac{h}{2}\hat{\mathcal{D}} \Big)\mathcal{F}
                    \{A^L_{K} + k_{2,K}\}\Big\} \Big)
                    &\forall j=1,\ldots,K\\
                A_j(z+h) &= \frac{k_{3,j}}{6}+\mathcal{F}^{-1}\Big\{
                    \exp\Big(\frac{h}{2}\hat{\mathcal{D}}\Big)
                    \mathcal{F}\big\{A^L_{j}
                    +\frac{k_{0,j}}{6}+\frac{k_{1,j}}{3}
                    +\frac{k_{2,j}}{3}\big\}\Big\} \quad
                    &\forall j=1,\ldots,K
              \end{align}

        where :math:`K` is the number of channels.

        """
        h_h = 0.5 * h
        A_L = np.zeros_like(waves)
        k_0 = np.zeros_like(waves)
        k_1 = np.zeros_like(waves)
        k_2 = np.zeros_like(waves)
        k_3 = np.zeros_like(waves)
        for i in range(len(waves)):
            A_L[i] = f.exp_term_lin(waves, i, z, h_h)
        for i in range(len(waves)):
            waves[i] = h * f.term_non_lin(waves, i, z)
        for i in range(len(waves)):
            k_0[i] = f.exp_term_lin(waves, i, z, h_h)
        for i in range(len(waves)):
            waves[i] = A_L[i] + 0.5*k_0[i]
        for i in range(len(waves)):
            k_1[i] = h * f.term_non_lin(waves, i, z)
        for i in range(len(waves)):
            waves[i] = A_L[i] + 0.5*k_1[i]
        for i in range(len(waves)):
            k_2[i] = h * f.term_non_lin(waves, i, z)
        for i in range(len(waves)):
            waves[i] = A_L[i] + k_2[i]
            waves[i] = f.exp_term_lin(waves, i, z, h_h)
        for i in range(len(waves)):
            k_3[i] = h * f.term_non_lin(waves, i, z)
        for i in range(len(waves)):
            waves[i] = A_L[i] + (k_0[i]/6.0) + ((k_1[i]+k_2[i])/3.0)
            waves[i] = (k_3[i]/6.0) + f.exp_term_lin(waves, i, z, h_h)

        return waves
コード例 #3
0
    def rk4ip_gnlse(f: AbstractFieldEquation, waves: np.ndarray, z: float,
                    h: float) -> np.ndarray:
        r"""Optimized Runge-Kutta interaction picture method.

        Parameters
        ----------
        f :
            The function to compute.
        waves :
            The value of the unknown (waves) at the considered
            space step.
        z :
            The current value of the space variable.
        h :
            The step size.

        Returns
        -------
        :
            The one step euler computation results.

        Notes
        -----

        Implementation:

        .. math::
              \begin{align}
                &A^L_j = \exp\Big(\frac{h}{2}\hat{\mathcal{D}}\Big)
                    \mathcal{F}\{A_j(z)\} &\forall j=1,\ldots,K\\
                &k_0 = h \exp\Big(\frac{h}{2}\hat{\mathcal{D}}\Big)
                    \hat{\mathcal{N}}_0\big(A_1(z), \ldots, A_j(z),
                    \ldots, A_K(z)\big)&\forall j=1,\ldots,K\\
                &k_1 = h \hat{\mathcal{N}}_0\Big(\mathcal{F}^{-1}
                    \Big\{A^L_{1} +\frac{k_{0,1}}{2},\ldots,
                    A^L_{j}+\frac{k_{0,j}}{2},\ldots, A^L_{K}
                    + \frac{k_{0,K}}{2}\Big\} \Big)
                    &\forall j=1,\ldots,K\\
                &k_2 = h \hat{\mathcal{N}}_0\Big(\mathcal{F}^{-1}
                    \Big\{A^L_{1} +\frac{k_{1,1}}{2},\ldots, A^L_{j}
                    +\frac{k_{1,j}}{2},\ldots, A^L_{K}
                    + \frac{k_{1,K}}{2}\Big\} \Big)
                    &\forall j=1,\ldots,K\\
                &k_3 = h \hat{\mathcal{N}}_0\Big(\mathcal{F}^{-1}
                    \Big\{\exp\Big(\frac{h}{2}\hat{\mathcal{D}}\Big)
                    (A^L_1 + k_{2, 1}) \Big\},\ldots, \nonumber \\
                & \qquad \qquad \quad \mathcal{F}^{-1}\Big\{\exp
                    \Big(\frac{h}{2}\hat{\mathcal{D}}\Big)(A^L_j
                    + k_{2,j}) \Big\}, \ldots,\nonumber\\
                & \qquad \qquad \quad \mathcal{F}^{-1}\Big\{\exp\Big(
                    \frac{h}{2}\hat{\mathcal{D}}\Big)(A^L_K + k_{2,K})
                    \Big\}\Big)&\forall j=1,\ldots,K\\
                &A(z+h) = \mathcal{F}^{-1}\Big\{\frac{k_{3,j}}{6}
                    +\exp\Big(\frac{h}{2}\hat{\mathcal{D}}\Big)
                    \big(A^L_{j}+\frac{k_{0,j}}{6}+\frac{k_{1,j}}{3}
                    +\frac{k_{2,j}}{3}\big)\Big\} &\forall j=1,\ldots,K
              \end{align}

        where :math:`K` is the number of channels.

        """
        if (isinstance(f, GNLSE) or isinstance(f, AmpGNLSE)):
            h_h = 0.5 * h
            exp_op_lin = np.zeros_like(waves)
            A_L = np.zeros_like(waves)
            k_0 = np.zeros_like(waves)
            k_1 = np.zeros_like(waves)
            k_2 = np.zeros_like(waves)
            k_3 = np.zeros_like(waves)
            for i in range(len(waves)):
                exp_op_lin[i] = f.exp_op_lin(waves, i, h_h)
            for i in range(len(waves)):
                A_L[i] = exp_op_lin[i] * FFT.fft(waves[i])
            for i in range(len(waves)):
                k_0[i] = h * exp_op_lin[i] * f.term_rk4ip_non_lin(waves, i, z)
            for i in range(len(waves)):
                waves[i] = FFT.ifft(A_L[i] + 0.5*k_0[i])
            for i in range(len(waves)):
                k_1[i] = h * f.term_rk4ip_non_lin(waves, i, z)
            for i in range(len(waves)):
                waves[i] = FFT.ifft(A_L[i] + 0.5*k_1[i])
            for i in range(len(waves)):
                k_2[i] = h * f.term_rk4ip_non_lin(waves, i, z)
            for i in range(len(waves)):
                waves[i] = FFT.ifft(exp_op_lin[i] * (A_L[i] + k_2[i]))
            for i in range(len(waves)):
                k_3[i] = h * f.term_rk4ip_non_lin(waves, i, z)
            for i in range(len(waves)):
                waves[i] = ((k_3[i]/6.0)
                            + (exp_op_lin[i] * (A_L[i] + k_0[i]/6.0
                                                + (k_1[i]+k_2[i])/3.0)))
                waves[i] = FFT.ifft(waves[i])
        else:

            raise RK4IPGNLSEError("Only the the gnlse can be computed with "
                "the rk4ip_gnlse method.")

        return waves
コード例 #4
0
    def ssfm_opti_super_sym(f: AbstractFieldEquation, waves: np.ndarray,
                            z: float, h: float) -> np.ndarray:
        r"""Optimized super symmetric split step Fourier method.

        Parameters
        ----------
        f :
            The function to compute.
        waves :
            The value of the unknown (waves) at the considered
            space step.
        z :
            The current value of the space variable.
        h :
            The step size.

        Returns
        -------
        :
            The one step euler computation results.

        Notes
        -----

        Equations:

        .. math::
              \begin{align}
                A_j^{L} &= \exp\Big(\frac{h}{2}\mathcal{D}\Big)A_j(z, T)
                    &\forall j=1,\ldots,K\\
                A_j^{N'} &= A_j^{L} +\frac{h}{2}\bar{\mathcal{N}}\big(
                    A_1^{N'},\ldots, A_{j-1}^{N'}, A_{j}^{L}, \ldots,
                    A_K^{L}\big) &\forall j=1,\ldots,K\\
                A_j^{N} &= A_j^{N'} +\frac{h}{2}\bar{\mathcal{N}}\big(
                    A_1^{N'},\ldots, A_{j}^{N'}, A_{j+1}^{N}, \ldots,
                    A_K^{N}\big)&\forall j=K,\ldots,1\\
                A_j(z+h, T) &=  \exp\Big(\frac{h}{2}\mathcal{D}\Big)
                    A_j^{N} &\forall j=1,\ldots,K
              \end{align}

        Implementation:

        .. math::
              \begin{align}
                A_j^{L} &= \mathcal{F}^{-1}\Big\{\exp\Big(\frac{h}{2}
                    \hat{\mathcal{D}}\Big)\mathcal{F}\{A_j(z)\}\Big\}
                    &\forall j=1,\ldots,K\\
                A_j^{N'} &= \exp\Big(\frac{h}{2}\hat{\mathcal{N}}
                    \big(A_1^{N'},\ldots, A_{j-1}^{N'}, A_{j}^{L},
                    \ldots, A_K^{L}\big)\Big)  A_j^{L}
                    &\forall j=1,\ldots,K\\
                A_j^{N} &= \exp\Big(\frac{h}{2}\hat{\mathcal{N}}
                    \big(A_1^{N'},\ldots, A_{j}^{N'}, A_{j+1}^{N},
                    \ldots, A_K^{N}\big)\Big)  A_j^{N'}
                    &\forall j=K,\ldots,1 \\
                A_j(z+h) &=  \mathcal{F}^{-1}\Big\{\exp\Big(\frac{h}{2}
                    \hat{\mathcal{D}}\Big)\mathcal{F}\{A_j^{N}\}\Big\}
                    &\forall j=1,\ldots,K
              \end{align}

        where :math:`K` is the number of channels.

        """
        h_h = 0.5 * h
        for i in range(len(waves)):
            waves[i] = f.exp_term_lin(waves, i, z, h_h)
        for i in range(len(waves)-1):
            waves[i] = f.exp_term_non_lin(waves, i, z, h_h, waves[i])
        waves[-1] = f.exp_term_non_lin(waves, len(waves)-1, z, h, waves[-1])
        for i in range(len(waves)-2, -1, -1):
            waves[i] = f.exp_term_non_lin(waves, i, z, h_h, waves[i])
        for i in range(len(waves)):
            waves[i] = f.exp_term_lin(waves, i, z, h_h)

        return waves