w = dou.load_npa(fbtdict[t]['w']) mtxtb = dou.load_npa(fbtdict[t]['mtxtb']) print t, np.linalg.norm(w), np.linalg.norm(mtxtb) def plot_vel_norms(tmesh, veldict): print 'plotting vel norms' for t in tmesh: w = dou.load_npa(veldict[t]) print t, np.linalg.norm(w) if __name__ == '__main__': plt.figure(11) plt.title('stokes') dtd = "data/drivencavity__stokes__timeall_nu0.005_mesh20_Nts16.0__sigout" jsf = ocm.load_json_dicts(dtd) plo.plot_optcont_json(jsf) plt.figure(12) plt.title('steady state stokes') dtd = "data/stst_drivencavity__stokes__timeNone_nu0.005_mesh20_NtsNoneNV3042NY4NU4alphau1e-09gamma0.001__sigout" jsf = ocm.load_json_dicts(dtd) plo.plot_optcont_json(jsf) plt.figure(13) plt.title('oseen dc') dtd = "data/tdst_drivencavity__stokes__timeall_nu0.005_mesh20_NtsNoneNV3042NY4NU4alphau1e-09gamma0.001__sigout" jsf = ocm.load_json_dicts(dtd) plo.plot_optcont_json(jsf) plt.figure(14)
import plot_output as plo import optcont_main as ocm import matplotlib.pyplot as plt path = '/home/heiland/work/papers/hei13_daericflow/pics/' # extra options for tikz extra = set(['ytick={-0.2, 0, 0.2}', 'xtick={0,0.2}']) plt.figure(111) fname = "pubpics/tds1_gamma0.001_alpha1e-9" jsf = ocm.load_json_dicts(fname) plo.plot_optcont_json(jsf, extra=extra, fname=path + 'tdgE-3aE-9') plt.figure(112) fname = "pubpics/sss1_gamma0.001_alpha1e-9" jsf = ocm.load_json_dicts(fname) plo.plot_optcont_json(jsf, extra=extra, fname=path + 'ssgE-3aE-9')