コード例 #1
0
 def test_force_normal(self):
     # The ray is normally incident on the sphere
     c = np.array([5.0,0,0])
     R = 1
     o = np.array([[0.0,0,0]])
     l = np.array([[1.0,0,0]])
     
     # This is the relative refractive index of the sphere
     nr = 1.5
     
     # And this is the polarization of the ray in Jones notation
     p = np.array([[1.0,0,0]])
     
     opt = osys.OpticalSystem(c, R, nr)
     opt._c = np.array([c])
     opt._l = l
     opt._o = o
     
     forces = opt._ray_force(p)
     
     # There should be a force towards +x. Moreover, it should more than 0.04 (reflectivity)
     self.assertGreater(forces[0,0], 0.04)
     
     # And the forces in the other directions should be zero
     self.assertTrue(np.allclose(forces[0,1:], 0))
コード例 #2
0
 def test_force_sign(self):
     # The ray is a bit displaced to the top
     c = np.array([5.0,0,0])
     R = 1
     o = np.array([[0,0,0.1]])
     l = np.array([[1.0,0,0]])
     
     # This is the relative refractive index of the sphere
     nr = 1.5
     
     # And this is the polarization of the ray in Jones notation
     p = np.array([[1.0,0,0]])
     
     opt = osys.OpticalSystem(c, R, nr)
     opt._c = np.array([c])
     opt._l = l
     opt._o = o
     
     forces = opt._ray_force(p)
     
     # Since the ray will be refracted towards -z, the force should be towards +z
     self.assertGreater(forces[0,2], 0)
     
     # And there should be a force towards +x
     self.assertGreater(forces[0,0], 0)
コード例 #3
0
 def test_snell_homogeneous(self):
     # If the relative index is 1, then there should be no change of propagation at all
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, 1)
     
     th = np.array([0, np.pi/3, np.pi/4, np.pi/5])
     
     self.assertTrue(np.allclose(opt._snell(th), th))
コード例 #4
0
 def test_snell_tangent(self):
     # At tangent incidence, the refr. angle should be critical:
     nr = 1.5
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, nr)
     r = opt._snell(np.array([np.pi/2]))
     
     self.assertAlmostEqual(np.sin(r)[0], 1/nr)
コード例 #5
0
 def test_intersect_normal_angle_director(self):
     opt = osys.OpticalSystem(np.array([3.0,0,0]), 1, 1.5)
     
     opt._o = np.array([[3.0,0,0]])
     opt._l = np.array([[1.0,1,1]])
     
     angle = opt._intersection_angle()
     self.assertAlmostEqual(angle[0], 0)
コード例 #6
0
 def test_intersect_45(self):
     # Here, the ray should intersect the sphere at 45 degrees
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, 1.5)
     
     opt._o = np.array([[0,0,-3.0]])
     opt._l = np.array([[1,0,1.0]])
     
     angle = opt._intersection_angle()
     self.assertAlmostEqual(angle[0], np.pi/4)
コード例 #7
0
 def test_intersect_tangent(self):
     # What happens if the ray is exactly tangent to the sphere?
     opt = osys.OpticalSystem(np.array([3.0,0,0]), 1, 1.5)
     
     opt._o = np.array([[4.0,0,10]])
     opt._l = np.array([[0,0,-1.0]])
     
     angle = opt._intersection_angle()
     self.assertAlmostEqual(angle[0], np.pi/2)
コード例 #8
0
 def test_intersect_normal_at_zero(self):
     # What happens if the position of the intersection is (0,0,0)?
     opt = osys.OpticalSystem(np.array([1.0,0,0]), 1, 1.5)
     
     opt._o = np.array([[1.0,0,0]])
     opt._l = np.array([[-1.0,1,1]])
     
     angle = opt._intersection_angle()
     self.assertAlmostEqual(angle[0], 0)
コード例 #9
0
 def test_intersect_normal_angle_director_external(self):
     # And now let the line hit the sphere normally, but at an angle to an axis
     opt = osys.OpticalSystem(np.array([5.0,0,0]), 1, 1.5)
     
     opt._o = np.array([[0,0,5.0]])
     opt._l = np.array([[1.0,0,-1]])
     
     angle = opt._intersection_angle()
     self.assertAlmostEqual(angle[0], 0, places=5)
コード例 #10
0
 def test_intersect_normal_inv_director(self):
     opt = osys.OpticalSystem(np.array([3.0,0,0]), 1, 1.5)
     
     opt._o = np.array([[3.0,0,0]])
     opt._l = np.array([[1.0,0,0]])
     
     opt._l = -6 * opt._l
     
     ## Inverting the line director shouldn't have any effect:
     
     angle = opt._intersection_angle()
     self.assertAlmostEqual(angle[0], 0)
コード例 #11
0
 def test_fresnel_brewster(self):
     # The reflectivity of a p-polarized ray should be nearly 0 at Brewster's angle
     nr = 1.5
     
     # Length of test sample
     testlen = 20
     
     th = np.arctan(nr) * np.ones(testlen)
     r = np.zeros(testlen)
     Pp = np.ones(testlen)
     
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, nr)
     
     r = opt._snell(th)
     
     T, R = opt._fresnel(th, r, Pp)
     self.assertTrue(np.allclose(R, 0))
コード例 #12
0
 def test_fresnel_tangent(self):
     # The reflectivity should be 1 at tangent incidence, regardless of polarization
     nr = 1.5
     
     # Length of test sample
     testlen = 20
     
     th = np.pi/2 * np.ones(testlen)
     r = np.zeros(testlen)
     Pp = np.linspace(0, 1, testlen)
     
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, nr)
     
     r = opt._snell(th)
     
     T, R = opt._fresnel(th, r, Pp)
     
     self.assertTrue(np.allclose(T+R, 1))
     self.assertTrue(np.allclose(R, 1))
コード例 #13
0
 def test_fresnel_normal(self):
     # Test Fresnel at normal incidence. It should not depend on the polarization, and the energy must be conserved between the transmittance and reflectance
     # Note that Fresnel only really depends on the relative index.
     # Also note that the polarization is specified as the normalized power of p-polarization (Pp). Then, the power of the s-polarization is simply (1-Pp).
     nr = 1.5
     
     # Length of test sample
     testlen = 20
     
     th = np.zeros(testlen)
     r = np.zeros(testlen)
     Pp = np.linspace(0, 1, testlen)
     
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, nr)
     
     T, R = opt._fresnel(th, r, Pp)
         
     self.assertTrue(np.allclose(T+R, 1))
     self.assertTrue(np.allclose(R, ((1 - nr)/(1 + nr))**2))
コード例 #14
0
 def test_force_ashkin(self):
     # Test the maximum gradient forces published in Ashkin, 1992
     
     # The origin of the ray will be on the sphere for simpler calculations:
     c = np.array([1.0,0,0])
     R = 1
     o = np.array([[0.0,0,0]])
     
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, 1.5)
     opt._c = np.array([c])
     
     # And this is the polarization of the ray in Jones notation (circular)
     p = np.array([[1.0,1j,0]])
     
     data = np.array([
         [1.1, np.sqrt(0.429**2 + 0.262**2), 79*np.pi/180],
         [1.2, np.sqrt(0.506**2 + 0.341**2), 72*np.pi/180],
         [1.4, np.sqrt(0.566**2 + 0.448**2), 64*np.pi/180],
         [1.6, np.sqrt(0.570**2 + 0.535**2), 60*np.pi/180],
         [1.8, np.sqrt(0.547**2 + 0.625**2), 59*np.pi/180],
         [2.0, np.sqrt(0.510**2 + 0.698**2), 59*np.pi/180],
         [2.5, np.sqrt(0.405**2 + 0.837**2), 64*np.pi/180]
         ])
     
     def check(row):
         th = row[2]
         Q = row[1]
         nr = row[0]
         
         opt.set_particle_index(nr)
         
         opt._l = np.array([[np.cos(th), 0, np.sin(th)]])
         forces = opt._ray_force(p)
         
         return np.abs(npl.norm(forces[0,:]) - Q)
         
     res = np.apply_along_axis(check, axis=1, arr=data)
     #print(res)
     self.assertLess(np.max(res), 0.021)
コード例 #15
0
 def test_snell_normal(self):
     # At normal incidence, the angle stays zero:
     opt = osys.OpticalSystem(np.array([4.0,0,0]), 1, 1.5)
     r = opt._snell(np.array([0]))
     
     self.assertAlmostEqual(r[0], 0)
コード例 #16
0
 def test_intersect_invalid_radius(self):
     ## The system should not accept zero or negative sphere radiuses
     for R in [-1, 0]:
         with self.assertRaises(ValueError):
             opt = osys.OpticalSystem(np.array([4.0,0,0]), R, 1.5)