def vid2frames(vid, oflow, pred_type, mul_oflow, oflow_pnum): from frame import frames_downsample, images_rescale from opticalflow import OpticalFlow, frames2flows from oflow_multiprocessing import process_oflow # Extract frames of a video and then normalize it to fixed-length # Then make optical flow and RGB lists # Input : video(Stream), RGB(Boolean), oflow(Boolean) # Output : RGB-list, oflow-list rgbFrames, oflowFrames = [], [] tuRectangle = (224, 224) success, frame = vid.read() frame_num = 0 while success: if not success: print("[warrning]: some video frames are corrupted.") # see if this line effecting the results frame = cv2.flip(frame, 1) frame = cv2.resize(frame, tuRectangle, interpolation=cv2.INTER_AREA) rgbFrames.append(frame) success, frame = vid.read() frame_num += 1 if len(rgbFrames) == 0: raise ValueError("Could not extract webcam frames successfully.") #rgbFrames = image_normalize(np.array(rgbFrames), 40) if len(rgbFrames) < 40: if oflow: if mul_oflow: oflowFrames = process_oflow(rgbFrames, oflow_pnum) else: oflowFrames = frames2flows(rgbFrames) oflowFrames = frames_downsample(oflowFrames, 40) rgbFrames = frames_downsample(np.array(rgbFrames), 40) else: if pred_type != "sentence": rgbFrames = frames_downsample(np.array(rgbFrames), 40) if oflow: if mul_oflow: oflowFrames = process_oflow(rgbFrames, oflow_pnum) else: oflowFrames = frames2flows(rgbFrames) rgbFrames = images_rescale(rgbFrames) return rgbFrames, oflowFrames, frame_num
def unittest_opticalflow_fromcamera(): timer = Timer() # start video capture from webcam oStream = video_start(1, (320, 240), 15) # loop over action states while True: # show live video and wait for key stroke key = video_show(oStream, "green", "Press <blank> to start", "") # start! if key == ord(' '): # countdown n sec video_show(oStream, "orange", "Recording starts in ", sLower = None, \ tuRectangle = (224, 224), nCountdown = 3) # record video for n sec fElapsed, arFrames, _ = video_capture(oStream, "red", "Recording ", \ tuRectangle = (224, 224), nTimeDuration = 5, bOpticalFlow = False) print("\nCaptured video: %.1f sec, %s, %.1f fps" % \ (fElapsed, str(arFrames.shape), len(arFrames)/fElapsed)) # show orange wait box frame_show(oStream, "orange", "Calculating optical flow ...") # calculate and show optical flow arFrames = images_crop(arFrames, 224, 224) timer.start() arFlows = frames2flows(arFrames, bThirdChannel=True) print("Optical flow per frame: %.3f" % (timer.stop() / len(arFrames))) frames_show(flows2colorimages(arFlows), int(5 * 1000 / len(arFrames))) elif key == ord('f'): unittest_fromfile() # quit elif key == ord('q'): break # do a bit of cleanup oStream.release() cv2.destroyAllWindows() return
def livedemo(): # dataset diVideoSet = { "sName": "chalearn", "nClasses": 20, # number of classes "nFramesNorm": 40, # number of frames per video "nMinDim": 240, # smaller dimension of saved video-frames "tuShape": (240, 320), # height, width "nFpsAvg": 10, "nFramesAvg": 50, "fDurationAvg": 5.0 } # seconds # files sClassFile = "data-set/%s/%03d/class.csv" % (diVideoSet["sName"], diVideoSet["nClasses"]) sVideoDir = "data-set/%s/%03d" % (diVideoSet["sName"], diVideoSet["nClasses"]) print("\nStarting gesture recognition live demo ... ") print(os.getcwd()) print(diVideoSet) # load label description oClasses = VideoClasses(sClassFile) sModelFile = "model/20180627-0729-chalearn020-oflow-i3d-entire-best.h5" h, w = 224, 224 keI3D = I3D_load(sModelFile, diVideoSet["nFramesNorm"], (h, w, 2), oClasses.nClasses) # open a pointer to the webcam video stream oStream = video_start(device=1, tuResolution=(320, 240), nFramePerSecond=diVideoSet["nFpsAvg"]) #liVideosDebug = glob.glob(sVideoDir + "/train/*/*.*") nCount = 0 sResults = "" timer = Timer() # loop over action states while True: # show live video and wait for key stroke key = video_show(oStream, "green", "Press <blank> to start", sResults, tuRectangle=(h, w)) # start! if key == ord(' '): # countdown n sec video_show(oStream, "orange", "Recording starts in ", tuRectangle=(h, w), nCountdown=3) # record video for n sec fElapsed, arFrames, _ = video_capture(oStream, "red", "Recording ", \ tuRectangle = (h, w), nTimeDuration = int(diVideoSet["fDurationAvg"]), bOpticalFlow = False) print("\nCaptured video: %.1f sec, %s, %.1f fps" % \ (fElapsed, str(arFrames.shape), len(arFrames)/fElapsed)) # show orange wait box frame_show(oStream, "orange", "Translating sign ...", tuRectangle=(h, w)) # crop and downsample frames arFrames = images_crop(arFrames, h, w) arFrames = frames_downsample(arFrames, diVideoSet["nFramesNorm"]) # Translate frames to flows - these are already scaled between [-1.0, 1.0] print("Calculate optical flow on %d frames ..." % len(arFrames)) timer.start() arFlows = frames2flows(arFrames, bThirdChannel=False, bShow=True) print("Optical flow per frame: %.3f" % (timer.stop() / len(arFrames))) # predict video from flows print("Predict video with %s ..." % (keI3D.name)) arX = np.expand_dims(arFlows, axis=0) arProbas = keI3D.predict(arX, verbose=1)[0] nLabel, sLabel, fProba = probability2label(arProbas, oClasses, nTop=3) sResults = "Sign: %s (%.0f%%)" % (sLabel, fProba * 100.) print(sResults) nCount += 1 # quit elif key == ord('q'): break # do a bit of cleanup oStream.release() cv2.destroyAllWindows() return
def live(): gameDisplay.blit(carImg, (0, 0)) # open a pointer to the webcam video stream oStream = video_start(device=1, tuResolution=(320, 240), nFramePerSecond=diVideoSet["nFpsAvg"]) timer = Timer() sResults = "" nCount = 0 while True: # show live video and wait for key stroke key = video_show(oStream, "green", "Press <blank> to start", sResults, tuRectangle=(h, w)) # start! if key == ord(' '): # countdown n sec video_show(oStream, "orange", "Recording starts in ", tuRectangle=(h, w), nCountdown=3) # record video for n sec fElapsed, arFrames, _ = video_capture(oStream, "red", "Recording ", \ tuRectangle=(h, w), nTimeDuration=int(diVideoSet["fDurationAvg"]), bOpticalFlow=False) print("\nCaptured video: %.1f sec, %s, %.1f fps" % \ (fElapsed, str(arFrames.shape), len(arFrames) / fElapsed)) # show orange wait box frame_show(oStream, "orange", "Translating sign ...", tuRectangle=(h, w)) # crop and downsample frames arFrames = images_crop(arFrames, h, w) arFrames = frames_downsample(arFrames, diVideoSet["nFramesNorm"]) # Translate frames to flows - these are already scaled between [-1.0, 1.0] print("Calculate optical flow on %d frames ..." % len(arFrames)) timer.start() arFlows = frames2flows(arFrames, bThirdChannel=False, bShow=True) print("Optical flow per frame: %.3f" % (timer.stop() / len(arFrames))) # predict video from flows print("Predict video with %s ..." % (keI3D.name)) arX = np.expand_dims(arFlows, axis=0) arProbas = keI3D.predict(arX, verbose=1)[0] nLabel, sLabel, fProba = probability2label(arProbas, oClasses, nTop=3) sResults = "Sign: %s (%.0f%%)" % (sLabel, fProba * 100.) print(sResults) nCount += 1 # quit break # do a bit of cleanup message_display(sResults) oStream.release() cv2.destroyAllWindows()