コード例 #1
0
ファイル: pretrain.py プロジェクト: jcyk/copyisallyouneed
def main(args, local_rank):

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO)

    vocabs = dict()
    vocabs['src'] = Vocab(args.src_vocab, 0, [BOS, EOS])
    vocabs['tgt'] = Vocab(args.tgt_vocab, 0, [BOS, EOS])

    if args.world_size == 1 or (dist.get_rank() == 0):
        logger.info(args)
        for name in vocabs:
            logger.info("vocab %s, size %d, coverage %.3f", name,
                        vocabs[name].size, vocabs[name].coverage)

    set_seed(19940117)

    #device = torch.device('cpu')
    torch.cuda.set_device(local_rank)
    device = torch.device('cuda', local_rank)

    if args.resume_ckpt:
        model = MatchingModel.from_pretrained(vocabs, args.resume_ckpt)
    else:
        model = MatchingModel.from_params(vocabs, args.layers, args.embed_dim,
                                          args.ff_embed_dim, args.num_heads,
                                          args.dropout, args.output_dim,
                                          args.bow)

    if args.world_size > 1:
        set_seed(19940117 + dist.get_rank())

    model = model.to(device)

    if args.resume_ckpt:
        dev_data = DataLoader(vocabs,
                              args.dev_data,
                              args.dev_batch_size,
                              addition=args.additional_negs)
        acc = validate(model, dev_data, device)
        logger.info("initialize from %s, initial acc %.2f", args.resume_ckpt,
                    acc)

    optimizer = Adam(model.parameters(),
                     lr=args.lr,
                     betas=(0.9, 0.98),
                     eps=1e-9)
    lr_schedule = get_linear_schedule_with_warmup(optimizer, args.warmup_steps,
                                                  args.total_train_steps)
    train_data = DataLoader(vocabs,
                            args.train_data,
                            args.per_gpu_train_batch_size,
                            worddrop=args.worddrop,
                            addition=args.additional_negs)
    global_step, step, epoch = 0, 0, 0
    tr_stat = Statistics()
    logger.info("start training")
    model.train()
    while global_step <= args.total_train_steps:
        for batch in train_data:
            batch = move_to_device(batch, device)
            loss, acc, bsz = model(batch['src_tokens'], batch['tgt_tokens'],
                                   args.label_smoothing)
            tr_stat.update({
                'loss': loss.item() * bsz,
                'nsamples': bsz,
                'acc': acc * bsz
            })
            tr_stat.step()
            loss.backward()

            step += 1
            if not (step % args.gradient_accumulation_steps
                    == -1 % args.gradient_accumulation_steps):
                continue

            if args.world_size > 1:
                average_gradients(model)

            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            lr_schedule.step()
            optimizer.zero_grad()
            global_step += 1

            if args.world_size == 1 or (dist.get_rank() == 0):
                if global_step % args.print_every == -1 % args.print_every:
                    logger.info("epoch %d, step %d, loss %.3f, acc %.3f",
                                epoch, global_step,
                                tr_stat['loss'] / tr_stat['nsamples'],
                                tr_stat['acc'] / tr_stat['nsamples'])
                    tr_stat = Statistics()
                if global_step > args.warmup_steps and global_step % args.eval_every == -1 % args.eval_every:
                    dev_data = DataLoader(vocabs,
                                          args.dev_data,
                                          args.dev_batch_size,
                                          addition=args.additional_negs)
                    acc = validate(model, dev_data, device)
                    logger.info("epoch %d, step %d, dev, dev acc %.2f", epoch,
                                global_step, acc)
                    save_path = '%s/epoch%d_batch%d_acc%.2f' % (
                        args.ckpt, epoch, global_step, acc)
                    model.save(args, save_path)
                    model.train()
            if global_step > args.total_train_steps:
                break
        epoch += 1
    logger.info('rank %d, finish training after %d steps', local_rank,
                global_step)
コード例 #2
0
def run(hparams,
        model,
        train_dataloader,
        valid_dataloader,
        device,
        out_dir='checkpoints'):
    learning_rate = hparams['learning_rate']
    accumulate_step = hparams['accumulate_step']
    lr_schedule = hparams['lr_schedule']
    warmup_steps = hparams['warmup_steps']
    warmup_proportion = hparams['warmup_proportion']
    n_embd = hparams['n_embd']
    num_optim_steps = hparams['num_optim_steps']
    train_batch_size = hparams['train_batch_size']
    valid_step = hparams['valid_step']
    no_token_id = hparams['no_token_id']

    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    total_params = sum([np.prod(p.size()) for p in model_parameters])
    logger.info('Number of parameter = {}'.format(total_params))

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'ln']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    optimizer = Adam(optimizer_grouped_parameters,
                     learning_rate,
                     max_grad_norm=1.0)

    step = 0
    global_step = 0
    epoch = 0

    while True:
        model.train()
        (tr_loss, tr_ppl, mean_ppl, nb_tr_examples,
         nb_tr_steps) = 0.0, 0.0, 0.0, 0, 0
        n_token_real, n_token_total = 0, 0
        pbar = tqdm.tqdm(enumerate(train_dataloader),
                         total=len(train_dataloader))

        for i, batch in pbar:
            batch = tuple(t.cuda() for t in batch)
            input_ids, position_ids, token_type_ids, label_ids, *_ = batch
            if no_token_id:
                token_type_ids = None
            loss, ppl = model(input_ids, position_ids, token_type_ids,
                              label_ids)
            loss = loss.mean()
            loss = loss / (train_batch_size / input_ids.shape[0])
            loss.backward()
            nb_tr_steps += 1
            tr_loss += float(
                loss.sum().item()) * (train_batch_size / input_ids.shape[0])

            if ppl.sum().item() < 1000000:
                tr_ppl += ppl.sum().item()
            else:
                tr_ppl += mean_ppl

            mean_loss = tr_loss / nb_tr_steps
            mean_ppl = tr_ppl / nb_tr_steps

            n_token_total += input_ids.shape[0] * input_ids.shape[1]
            n_token_real += (input_ids != 0).sum().item()

            #gradient update
            step += 1
            if step % accumulate_step == 0:
                set_lr(optimizer, global_step, lr_schedule, learning_rate,
                       warmup_steps, warmup_proportion, n_embd,
                       num_optim_steps)
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

                print(
                    'epoch: {}, global_step: {}, step: {}, mean_loss: {}, mean_ppl:{}'
                    .format(epoch + 1, global_step + 1, step + 1, mean_loss,
                            mean_ppl),
                    file=train_logger)

                if global_step % valid_step == 0:
                    print('Saving model...')
                    torch.save(
                        {
                            'model': model.state_dict(),
                            'epoch': epoch,
                            'hparams': hparams,
                        },
                        os.path.join(out_dir,
                                     f'GPT2-pretrain-step-{global_step}.pkl'))
                    eval_loss, eval_ppl = valid(model, valid_dataloader, epoch,
                                                device)
                    print('{},{},{},{},{}'.format(epoch + 1, global_step + 1,
                                                  step + 1, eval_loss,
                                                  eval_ppl),
                          file=valid_logger)
                    logger.info('current learning rate: ' +
                                str(optimizer.param_groups[0]['lr']))
                    model.train()
                if global_step >= num_optim_steps:
                    break
            if (step + 1) % CACHE_EMPTY_STEP == 0:
                torch.cuda.empty_cache()
        if global_step >= num_optim_steps:
            break
        epoch += 1
    train_logger.close()
    valid_logger.close()
コード例 #3
0
ファイル: train.py プロジェクト: jcyk/copyisallyouneed
def main(args, local_rank):

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO)

    vocabs = dict()
    vocabs['src'] = Vocab(args.src_vocab, 0, [BOS, EOS])
    vocabs['tgt'] = Vocab(args.tgt_vocab, 0, [BOS, EOS])

    if args.world_size == 1 or (dist.get_rank() == 0):
        logger.info(args)
        for name in vocabs:
            logger.info("vocab %s, size %d, coverage %.3f", name,
                        vocabs[name].size, vocabs[name].coverage)

    set_seed(19940117)

    #device = torch.device('cpu')
    torch.cuda.set_device(local_rank)
    device = torch.device('cuda', local_rank)

    if args.arch == 'vanilla':
        model = Generator(vocabs, args.embed_dim, args.ff_embed_dim,
                          args.num_heads, args.dropout, args.enc_layers,
                          args.dec_layers, args.label_smoothing)
    elif args.arch == 'mem':
        model = MemGenerator(vocabs, args.embed_dim, args.ff_embed_dim,
                             args.num_heads, args.dropout, args.mem_dropout,
                             args.enc_layers, args.dec_layers,
                             args.mem_enc_layers, args.label_smoothing,
                             args.use_mem_score)
    elif args.arch == 'rg':
        logger.info("start building model")
        logger.info("building retriever")
        retriever = Retriever.from_pretrained(
            args.num_retriever_heads,
            vocabs,
            args.retriever,
            args.nprobe,
            args.topk,
            local_rank,
            use_response_encoder=(args.rebuild_every > 0))

        logger.info("building retriever + generator")
        model = RetrieverGenerator(vocabs, retriever, args.share_encoder,
                                   args.embed_dim, args.ff_embed_dim,
                                   args.num_heads, args.dropout,
                                   args.mem_dropout, args.enc_layers,
                                   args.dec_layers, args.mem_enc_layers,
                                   args.label_smoothing)

    if args.resume_ckpt:
        model.load_state_dict(torch.load(args.resume_ckpt)['model'])
    else:
        global_step = 0

    if args.world_size > 1:
        set_seed(19940117 + dist.get_rank())

    model = model.to(device)

    retriever_params = [
        v for k, v in model.named_parameters() if k.startswith('retriever.')
    ]
    other_params = [
        v for k, v in model.named_parameters()
        if not k.startswith('retriever.')
    ]

    optimizer = Adam([{
        'params': retriever_params,
        'lr': args.embed_dim**-0.5 * 0.1
    }, {
        'params': other_params,
        'lr': args.embed_dim**-0.5
    }],
                     betas=(0.9, 0.98),
                     eps=1e-9)
    lr_schedule = get_inverse_sqrt_schedule_with_warmup(
        optimizer, args.warmup_steps, args.total_train_steps)
    train_data = DataLoader(vocabs,
                            args.train_data,
                            args.per_gpu_train_batch_size,
                            for_train=True,
                            rank=local_rank,
                            num_replica=args.world_size)

    model.eval()
    #dev_data = DataLoader(vocabs, cur_dev_data, args.dev_batch_size, for_train=False)
    #bleu = validate(device, model, dev_data, beam_size=5, alpha=0.6, max_time_step=10)

    step, epoch = 0, 0
    tr_stat = Statistics()
    logger.info("start training")
    model.train()

    best_dev_bleu = 0.
    while global_step <= args.total_train_steps:
        for batch in train_data:
            #step_start = time.time()
            batch = move_to_device(batch, device)
            if args.arch == 'rg':
                loss, acc = model(
                    batch,
                    update_mem_bias=(global_step >
                                     args.update_retriever_after))
            else:
                loss, acc = model(batch)

            tr_stat.update({
                'loss': loss.item() * batch['tgt_num_tokens'],
                'tokens': batch['tgt_num_tokens'],
                'acc': acc
            })
            tr_stat.step()
            loss.backward()
            #step_cost = time.time() - step_start
            #print ('step_cost', step_cost)
            step += 1
            if not (step % args.gradient_accumulation_steps
                    == -1 % args.gradient_accumulation_steps):
                continue

            if args.world_size > 1:
                average_gradients(model)

            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            lr_schedule.step()
            optimizer.zero_grad()
            global_step += 1

            if args.world_size == 1 or (dist.get_rank() == 0):
                if global_step % args.print_every == -1 % args.print_every:
                    logger.info("epoch %d, step %d, loss %.3f, acc %.3f",
                                epoch, global_step,
                                tr_stat['loss'] / tr_stat['tokens'],
                                tr_stat['acc'] / tr_stat['tokens'])
                    tr_stat = Statistics()
                if global_step % args.eval_every == -1 % args.eval_every:
                    model.eval()
                    max_time_step = 256 if global_step > 2 * args.warmup_steps else 5
                    bleus = []
                    for cur_dev_data in args.dev_data:
                        dev_data = DataLoader(vocabs,
                                              cur_dev_data,
                                              args.dev_batch_size,
                                              for_train=False)
                        bleu = validate(device,
                                        model,
                                        dev_data,
                                        beam_size=5,
                                        alpha=0.6,
                                        max_time_step=max_time_step)
                        bleus.append(bleu)
                    bleu = sum(bleus) / len(bleus)
                    logger.info("epoch %d, step %d, dev bleu %.2f", epoch,
                                global_step, bleu)
                    if bleu > best_dev_bleu:
                        testbleus = []
                        for cur_test_data in args.test_data:
                            test_data = DataLoader(vocabs,
                                                   cur_test_data,
                                                   args.dev_batch_size,
                                                   for_train=False)
                            testbleu = validate(device,
                                                model,
                                                test_data,
                                                beam_size=5,
                                                alpha=0.6,
                                                max_time_step=max_time_step)
                            testbleus.append(testbleu)
                        testbleu = sum(testbleus) / len(testbleus)
                        logger.info("epoch %d, step %d, test bleu %.2f", epoch,
                                    global_step, testbleu)
                        torch.save({
                            'args': args,
                            'model': model.state_dict()
                        }, '%s/best.pt' % (args.ckpt, ))
                        if not args.only_save_best:
                            torch.save(
                                {
                                    'args': args,
                                    'model': model.state_dict()
                                },
                                '%s/epoch%d_batch%d_devbleu%.2f_testbleu%.2f' %
                                (args.ckpt, epoch, global_step, bleu,
                                 testbleu))
                        best_dev_bleu = bleu
                    model.train()

            if args.rebuild_every > 0 and (global_step % args.rebuild_every
                                           == -1 % args.rebuild_every):
                model.retriever.drop_index()
                torch.cuda.empty_cache()
                next_index_dir = '%s/batch%d' % (args.ckpt, global_step)
                if args.world_size == 1 or (dist.get_rank() == 0):
                    model.retriever.rebuild_index(next_index_dir)
                    dist.barrier()
                else:
                    dist.barrier()
                model.retriever.update_index(next_index_dir, args.nprobe)

            if global_step > args.total_train_steps:
                break
        epoch += 1
    logger.info('rank %d, finish training after %d steps', local_rank,
                global_step)
コード例 #4
0
ファイル: iaf_toy_regression.py プロジェクト: rikrd/torchkit
    
    

    
    L = 32
    adam = Adam(bnn.params.parameters(), 0.001)
    


    
    T = 2500
    x1, x2 = -6, 6
    y1, y2 = -100, 100
    for i in range(T):
        
        adam.zero_grad()
        bnn.params.sample()
        loss = lossf(X_,Y_)
        loss.backward()
        adam.step()

        if i % 100 == 0:
            print i, loss.data.numpy()[0]
    
    N = 500
    xx = varify(np.linspace(x1,x2,N).astype('float32').reshape(N,1))
    yys = list()
    for i in range(32):
        bnn.params.sample()
        yys.append(model(xx).data.numpy())