コード例 #1
0
def test_add_normalizer():
    def dummy_normalization(grad):
        norm = K.mean(K.abs(grad)) + K.epsilon()
        return norm

    func_name = 'dummy'

    # add the function to the name list
    NormalizedOptimizer.set_normalization_function(func_name,
                                                   dummy_normalization)

    # check if it exists in the name list now
    name_list = NormalizedOptimizer.get_normalization_functions()
    assert func_name in name_list

    # train a model on this new normalizer
    sgd = NormalizedOptimizer('sgd', normalization=func_name)
    _test_optimizer(sgd)
    _test_no_grad(sgd)
コード例 #2
0
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    # if the input optimizer is not a NormalizedOptimizer, wrap the optimizer
    # with a default NormalizedOptimizer
    if optimizer.__class__.__name__ != NormalizedOptimizer.__name__:
        optimizer = NormalizedOptimizer(optimizer, normalization='l2')

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1], )))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target

    # Test optimizer serialization and deserialization.
    config = optimizers.serialize(optimizer)
    optim = optimizers.deserialize(config)
    new_config = optimizers.serialize(optim)
    assert config == new_config

    # Test weights saving and loading.
    original_weights = optimizer.weights

    model.save('temp.h5')
    temp_model = load_model('temp.h5')
    loaded_weights = temp_model.optimizer.weights
    assert len(original_weights) == len(loaded_weights)
    os.remove('temp.h5')

    # Test constraints.
    model = Sequential()
    dense = Dense(
        10,
        input_shape=(x_train.shape[1], ),
        kernel_constraint=lambda x: 0. * x + 1.,
        bias_constraint=lambda x: 0. * x + 2.,
    )
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.)
コード例 #3
0
def test_wrong_normalization():
    with pytest.raises(ValueError):
        NormalizedOptimizer('sgd', normalization=None)
コード例 #4
0
def test_tf_optimizer():
    with pytest.raises(NotImplementedError):
        import tensorflow as tf
        tf_opt = optimizers.TFOptimizer(tf.train.GradientDescentOptimizer(0.1))
        NormalizedOptimizer(tf_opt, normalization='l2')
コード例 #5
0
def test_clipvalue_normalized():
    sgd = optimizers.SGD(lr=0.01, momentum=0.9, clipvalue=0.5)
    sgd = NormalizedOptimizer(sgd, normalization='l2')
    _test_optimizer(sgd)
コード例 #6
0
def test_sgd_normalized_average_l1_l2():
    sgd = optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
    sgd = NormalizedOptimizer(sgd, normalization='avg_l1_l2')
    _test_optimizer(sgd)
    _test_no_grad(sgd)
コード例 #7
0
def test_sgd_normalized_std():
    sgd = optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
    sgd = NormalizedOptimizer(sgd, normalization='std')
    _test_optimizer(sgd)
    _test_no_grad(sgd)
コード例 #8
0
def test_sgd_normalized_l1_l2():
    sgd = optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
    sgd = NormalizedOptimizer(sgd, normalization='l1_l2')
    _test_optimizer(sgd, target=0.45)
    _test_no_grad(sgd)
コード例 #9
0
def test_sgd_normalized_from_string():
    sgd = NormalizedOptimizer('sgd', normalization='l2')
    _test_optimizer(sgd)
    _test_no_grad(sgd)