def drop_by_dtypes(input_cols, data_type=None): """ Drop rows by cell data type :param input_cols: Column in which the filter is going to be apllied :param data_type: filter by string, integer, float or boolean :return: Spark DataFrame """ validate_columns_names(self, input_cols) return self.rows.drop(fbdt(input_cols, data_type))
def drop_by_dtypes(input_cols, data_type=None): """ Drop rows by cell data type :param input_cols: Column in which the filter is going to be apllied :param data_type: filter by string, integer, float or boolean :return: Spark DataFrame """ df = self validate_columns_names(df, input_cols) df = df.rows.drop(fbdt(input_cols, data_type)) df = df.preserve_meta(self, Actions.DROP_ROW.value, df.cols.names()) return df