def __init__(self, args, schema, price_tracker, model_path, timed): super(PytorchNeuralSystem, self).__init__() self.schema = schema self.price_tracker = price_tracker self.timed_session = timed # TODO: do we need the dummy parser? dummy_parser = argparse.ArgumentParser(description='duh') options.add_model_arguments(dummy_parser) options.add_data_generator_arguments(dummy_parser) dummy_args = dummy_parser.parse_known_args([])[0] # Load the model. mappings, model, model_args = model_builder.load_test_model( model_path, args, dummy_args.__dict__) self.model_name = model_args.model vocab = mappings['utterance_vocab'] self.mappings = mappings generator = get_generator(model, vocab, Scorer(args.alpha), args, model_args) builder = UtteranceBuilder(vocab, args.n_best, has_tgt=True) preprocessor = Preprocessor(schema, price_tracker, model_args.entity_encoding_form, model_args.entity_decoding_form, model_args.entity_target_form) textint_map = TextIntMap(vocab, preprocessor) remove_symbols = map(vocab.to_ind, (markers.EOS, markers.PAD)) use_cuda = use_gpu(args) kb_padding = mappings['kb_vocab'].to_ind(markers.PAD) dialogue_batcher = DialogueBatcherFactory.get_dialogue_batcher(model=self.model_name, kb_pad=kb_padding, mappings=mappings, num_context=model_args.num_context) # TODO: class variable is not a good way to do this Dialogue.preprocessor = preprocessor Dialogue.textint_map = textint_map Dialogue.mappings = mappings Dialogue.num_context = model_args.num_context Env = namedtuple('Env', ['model', 'vocab', 'preprocessor', 'textint_map', 'stop_symbol', 'remove_symbols', 'gt_prefix', 'max_len', 'dialogue_batcher', 'cuda', 'dialogue_generator', 'utterance_builder', 'model_args']) self.env = Env(model, vocab, preprocessor, textint_map, stop_symbol=vocab.to_ind(markers.EOS), remove_symbols=remove_symbols, gt_prefix=1, max_len=20, dialogue_batcher=dialogue_batcher, cuda=use_cuda, dialogue_generator=generator, utterance_builder=builder, model_args=model_args)
return report_stats if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--random-seed', help='Random seed', type=int, default=1) parser.add_argument('--test', default=False, action='store_true', help='Test mode') parser.add_argument('--best', default=False, action='store_true', help='Test using the best model on dev set') parser.add_argument('--vocab-only', default=False, action='store_true', help='Only build the vocab') parser.add_argument('--verbose', default=False, action='store_true', help='More prints') parser.add_argument('--name', default='sl', type=str, help='Name of this experiment.') parser.add_argument('--agent-checkpoint', type=str, default=None, help='Directory to learned models') options.add_data_generator_arguments(parser) options.add_model_arguments(parser) options.add_trainer_arguments(parser) args = parser.parse_args() random.seed(args.random_seed) model_args = args if torch.cuda.is_available() and not args.gpuid: print("WARNING: You have a CUDA device, should run with -gpuid 0") if args.gpuid: cuda.set_device(args.gpuid[0]) if args.random_seed > 0: torch.cuda.manual_seed(args.random_seed) loading_timer = tm.time()
def __init__(self, args, schema, price_tracker, model_path, timed, name=None): super(PytorchNeuralSystem, self).__init__() self.schema = schema self.price_tracker = price_tracker self.timed_session = timed # TODO: do we need the dummy parser? dummy_parser = argparse.ArgumentParser(description='duh') options.add_model_arguments(dummy_parser) options.add_data_generator_arguments(dummy_parser) dummy_args = dummy_parser.parse_known_args([])[0] # Load the model. mappings, model, model_args, critic = rl_model_builder.load_test_model( model_path, args, dummy_args.__dict__) # Load critic from other model. # if name == 'tom': if hasattr(args, 'load_critic_from') and args.load_critic_from is not None: critic_path = args.load_critic_from _, _, _, critic = rl_model_builder.load_test_model( critic_path, args, dummy_args.__dict__) self.model_name = model_args.model vocab = mappings['utterance_vocab'] # print(vocab.word_to_ind) self.mappings = mappings generator = get_generator(model, vocab, Scorer(args.alpha), args, model_args) builder = UtteranceBuilder(vocab, args.n_best, has_tgt=True) nlg_module = IRNLG(args) preprocessor = Preprocessor(schema, price_tracker, model_args.entity_encoding_form, model_args.entity_decoding_form, model_args.entity_target_form) textint_map = TextIntMap(vocab, preprocessor) remove_symbols = map(vocab.to_ind, (markers.EOS, markers.PAD)) use_cuda = use_gpu(args) kb_padding = mappings['kb_vocab'].to_ind(markers.PAD) # print('args: ', model_args.dia_num, model_args.state_length) dialogue_batcher = DialogueBatcherFactory.get_dialogue_batcher(model=self.model_name, kb_pad=kb_padding, mappings=mappings, num_context=model_args.num_context, dia_num=model_args.dia_num, state_length=model_args.state_length) # TODO: class variable is not a good way to do this Dialogue.preprocessor = preprocessor Dialogue.textint_map = textint_map Dialogue.mappings = mappings Dialogue.num_context = model_args.num_context Env = namedtuple('Env', ['model', 'vocab', 'preprocessor', 'textint_map', 'stop_symbol', 'remove_symbols', 'gt_prefix', 'max_len', 'dialogue_batcher', 'cuda', 'dialogue_generator', 'utterance_builder', 'model_args', 'critic', 'usetom', 'name', 'price_strategy', 'tom_type', 'nlg_module']) self.env = Env(model, vocab, preprocessor, textint_map, stop_symbol=vocab.to_ind(markers.EOS), remove_symbols=remove_symbols, gt_prefix=1, max_len=20, dialogue_batcher=dialogue_batcher, cuda=use_cuda, dialogue_generator=generator, utterance_builder=builder, model_args=model_args, critic=critic, usetom=(name == 'tom'), name=name, price_strategy=args.price_strategy, tom_type=args.tom_type, nlg_module=nlg_module)
if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--random-seed', help='Random seed', type=int, default=1) parser.add_argument( '--stats-file', help='Path to save json statistics (dataset, training etc.) file') add_data_generator_arguments(parser) args = parser.parse_args() # Know which arguments are for the models thus should not be # overwritten during test dummy_parser = argparse.ArgumentParser(description='duh') add_model_arguments(dummy_parser) add_data_generator_arguments(dummy_parser) dummy_args = dummy_parser.parse_known_args([])[0] if cuda.is_available() and not args.gpuid: print("WARNING: You have a CUDA device, should run with --gpuid 0") if args.gpuid: cuda.set_device(args.gpuid[0]) # Load the model. mappings, model, model_args = \ model_builder.load_test_model(args.checkpoint, args, dummy_args.__dict__) # Figure out src and tgt vocab make_model_mappings(model_args.model, mappings)
import options if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--random-seed', help='Random seed', type=int, default=1) options.add_data_generator_arguments(parser) options.add_generator_arguments(parser) args = parser.parse_args() # Know which arguments are for the models thus should not be # overwritten during test dummy_parser = argparse.ArgumentParser(description='duh') options.add_model_arguments(dummy_parser) options.add_data_generator_arguments(dummy_parser) dummy_args = dummy_parser.parse_known_args([])[0] if cuda.is_available() and not args.gpuid: print("WARNING: You have a CUDA device, should run with --gpuid 0") if args.gpuid: cuda.set_device(args.gpuid[0]) # Load the model. mappings, model, model_args = \ model_builder.load_test_model(args.checkpoint, args, dummy_args.__dict__) # Figure out src and tgt vocab make_model_mappings(model_args.model, mappings)