コード例 #1
0
ファイル: train.py プロジェクト: JoeyBallentine/BasicSR
def get_resume_state(opt):
    logger = util.get_root_logger()

    # train from scratch OR resume training
    if opt['path']['resume_state']:
        if os.path.isdir(opt['path']['resume_state']):
            resume_state_path = glob.glob(opt['path']['resume_state'] +
                                          '/*.state')
            resume_state_path = util.sorted_nicely(resume_state_path)[-1]
        else:
            resume_state_path = opt['path']['resume_state']

        if opt['gpu_ids']:
            resume_state = torch.load(resume_state_path)
        else:
            resume_state = torch.load(resume_state_path,
                                      map_location=torch.device('cpu'))

        logger.info('Set [resume_state] to {}'.format(resume_state_path))
        logger.info('Resuming training from epoch: {}, iter: {}.'.format(
            resume_state['epoch'], resume_state['iter']))
        options.check_resume(opt)  # check resume options
    else:  # training from scratch
        resume_state = None
    return resume_state
コード例 #2
0
ファイル: train.py プロジェクト: wwhappylife/DAN
def main():
    #### setup options of three networks
    parser = argparse.ArgumentParser()
    parser.add_argument("-opt",
                        type=str,
                        help="Path to option YMAL file of Predictor.")
    parser.add_argument("--launcher",
                        choices=["none", "pytorch"],
                        default="none",
                        help="job launcher")
    parser.add_argument("--local_rank", type=int, default=0)
    args = parser.parse_args()
    opt = option.parse(args.opt, is_train=True)

    # convert to NoneDict, which returns None for missing keys
    opt = option.dict_to_nonedict(opt)

    # choose small opt for SFTMD test, fill path of pre-trained model_F
    #### set random seed
    seed = opt["train"]["manual_seed"]
    if seed is None:
        seed = random.randint(1, 10000)
    util.set_random_seed(seed)

    # load PCA matrix of enough kernel
    print("load PCA matrix")
    pca_matrix = torch.load(opt["pca_matrix_path"],
                            map_location=lambda storage, loc: storage)
    print("PCA matrix shape: {}".format(pca_matrix.shape))

    #### distributed training settings
    if args.launcher == "none":  # disabled distributed training
        opt["dist"] = False
        opt["dist"] = False
        rank = -1
        print("Disabled distributed training.")
    else:
        opt["dist"] = True
        opt["dist"] = True
        init_dist()
        world_size = (
            torch.distributed.get_world_size()
        )  # Returns the number of processes in the current process group
        rank = torch.distributed.get_rank(
        )  # Returns the rank of current process group

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    ###### Predictor&Corrector train ######

    #### loading resume state if exists
    if opt["path"].get("resume_state", None):
        # distributed resuming: all load into default GPU
        device_id = torch.cuda.current_device()
        resume_state = torch.load(
            opt["path"]["resume_state"],
            map_location=lambda storage, loc: storage.cuda(device_id),
        )
        option.check_resume(opt, resume_state["iter"])  # check resume options
    else:
        resume_state = None

    #### mkdir and loggers
    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0-7)
        if resume_state is None:
            # Predictor path
            util.mkdir_and_rename(
                opt["path"]
                ["experiments_root"])  # rename experiment folder if exists
            util.mkdirs(
                (path for key, path in opt["path"].items()
                 if not key == "experiments_root"
                 and "pretrain_model" not in key and "resume" not in key))
            os.system("rm ./log")
            os.symlink(os.path.join(opt["path"]["experiments_root"], ".."),
                       "./log")

        # config loggers. Before it, the log will not work
        util.setup_logger(
            "base",
            opt["path"]["log"],
            "train_" + opt["name"],
            level=logging.INFO,
            screen=True,
            tofile=True,
        )
        util.setup_logger(
            "val",
            opt["path"]["log"],
            "val_" + opt["name"],
            level=logging.INFO,
            screen=True,
            tofile=True,
        )
        logger = logging.getLogger("base")
        logger.info(option.dict2str(opt))
        # tensorboard logger
        if opt["use_tb_logger"] and "debug" not in opt["name"]:
            version = float(torch.__version__[0:3])
            if version >= 1.1:  # PyTorch 1.1
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info(
                    "You are using PyTorch {}. Tensorboard will use [tensorboardX]"
                    .format(version))
                from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter(log_dir="log/tb_logger/" + opt["name"])
    else:
        util.setup_logger("base",
                          opt["path"]["log"],
                          "train",
                          level=logging.INFO,
                          screen=True)
        logger = logging.getLogger("base")

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    #### create train and val dataloader
    dataset_ratio = 200  # enlarge the size of each epoch
    for phase, dataset_opt in opt["datasets"].items():
        if phase == "train":
            train_set = create_dataset(dataset_opt)
            train_size = int(
                math.ceil(len(train_set) / dataset_opt["batch_size"]))
            total_iters = int(opt["train"]["niter"])
            total_epochs = int(math.ceil(total_iters / train_size))
            if opt["dist"]:
                train_sampler = DistIterSampler(train_set, world_size, rank,
                                                dataset_ratio)
                total_epochs = int(
                    math.ceil(total_iters / (train_size * dataset_ratio)))
            else:
                train_sampler = None
            train_loader = create_dataloader(train_set, dataset_opt, opt,
                                             train_sampler)
            if rank <= 0:
                logger.info(
                    "Number of train images: {:,d}, iters: {:,d}".format(
                        len(train_set), train_size))
                logger.info("Total epochs needed: {:d} for iters {:,d}".format(
                    total_epochs, total_iters))
        elif phase == "val":
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(val_set, dataset_opt, opt, None)
            if rank <= 0:
                logger.info("Number of val images in [{:s}]: {:d}".format(
                    dataset_opt["name"], len(val_set)))
        else:
            raise NotImplementedError(
                "Phase [{:s}] is not recognized.".format(phase))
    assert train_loader is not None
    assert val_loader is not None

    #### create model
    model = create_model(opt)  # load pretrained model of SFTMD

    #### resume training
    if resume_state:
        logger.info("Resuming training from epoch: {}, iter: {}.".format(
            resume_state["epoch"], resume_state["iter"]))

        start_epoch = resume_state["epoch"]
        current_step = resume_state["iter"]
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        current_step = 0
        start_epoch = 0

    prepro = util.SRMDPreprocessing(
        opt["scale"],
        pca_matrix,
        random=True,
        para_input=opt["code_length"],
        kernel=opt["kernel_size"],
        noise=False,
        cuda=True,
        sig=None,
        sig_min=opt["sig_min"],
        sig_max=opt["sig_max"],
        rate_iso=1.0,
        scaling=3,
        rate_cln=0.2,
        noise_high=0.0,
    )
    #### training
    logger.info("Start training from epoch: {:d}, iter: {:d}".format(
        start_epoch, current_step))
    for epoch in range(start_epoch, total_epochs + 1):
        if opt["dist"]:
            train_sampler.set_epoch(epoch)
        for _, train_data in enumerate(train_loader):
            current_step += 1
            if current_step > total_iters:
                break
            #### preprocessing for LR_img and kernel map
            LR_img, ker_map = prepro(train_data["GT"])
            LR_img = (LR_img * 255).round() / 255
            #### training Predictor
            model.feed_data(LR_img, train_data["GT"], ker_map)
            model.optimize_parameters(current_step)
            model.update_learning_rate(current_step,
                                       warmup_iter=opt["train"]["warmup_iter"])
            visuals = model.get_current_visuals()

            #### log of model_P
            if current_step % opt["logger"]["print_freq"] == 0:
                logs = model.get_current_log()
                message = "Predictor <epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> ".format(
                    epoch, current_step, model.get_current_learning_rate())
                for k, v in logs.items():
                    message += "{:s}: {:.4e} ".format(k, v)
                    # tensorboard logger
                    if opt["use_tb_logger"] and "debug" not in opt["name"]:
                        if rank <= 0:
                            tb_logger.add_scalar(k, v, current_step)
                if rank <= 0:
                    logger.info(message)

            # validation, to produce ker_map_list(fake)
            if current_step % opt["train"]["val_freq"] == 0 and rank <= 0:
                avg_psnr = 0.0
                idx = 0
                for _, val_data in enumerate(val_loader):

                    # LR_img, ker_map = prepro(val_data['GT'])
                    LR_img = val_data["LQ"]
                    lr_img = util.tensor2img(
                        LR_img)  # save LR image for reference

                    # valid Predictor
                    model.feed_data(LR_img, val_data["GT"])
                    model.test()
                    visuals = model.get_current_visuals()

                    # Save images for reference
                    img_name = os.path.splitext(
                        os.path.basename(val_data["LQ_path"][0]))[0]
                    img_dir = os.path.join(opt["path"]["val_images"], img_name)
                    # img_dir = os.path.join(opt['path']['val_images'], str(current_step), '_', str(step))
                    util.mkdir(img_dir)
                    save_lr_path = os.path.join(img_dir,
                                                "{:s}_LR.png".format(img_name))
                    util.save_img(lr_img, save_lr_path)

                    sr_img = util.tensor2img(visuals["SR"])  # uint8
                    gt_img = util.tensor2img(visuals["GT"])  # uint8

                    save_img_path = os.path.join(
                        img_dir,
                        "{:s}_{:d}.png".format(img_name, current_step))
                    util.save_img(sr_img, save_img_path)

                    # calculate PSNR
                    crop_size = opt["scale"]
                    gt_img = gt_img / 255.0
                    sr_img = sr_img / 255.0
                    cropped_sr_img = sr_img[crop_size:-crop_size,
                                            crop_size:-crop_size, :]
                    cropped_gt_img = gt_img[crop_size:-crop_size,
                                            crop_size:-crop_size, :]

                    avg_psnr += util.calculate_psnr(cropped_sr_img * 255,
                                                    cropped_gt_img * 255)
                    idx += 1

                avg_psnr = avg_psnr / idx

                # log
                logger.info("# Validation # PSNR: {:.6f}".format(avg_psnr))
                logger_val = logging.getLogger("val")  # validation logger
                logger_val.info(
                    "<epoch:{:3d}, iter:{:8,d}, psnr: {:.6f}".format(
                        epoch, current_step, avg_psnr))
                # tensorboard logger
                if opt["use_tb_logger"] and "debug" not in opt["name"]:
                    tb_logger.add_scalar("psnr", avg_psnr, current_step)

            #### save models and training states
            if current_step % opt["logger"]["save_checkpoint_freq"] == 0:
                if rank <= 0:
                    logger.info("Saving models and training states.")
                    model.save(current_step)
                    model.save_training_state(epoch, current_step)

    if rank <= 0:
        logger.info("Saving the final model.")
        model.save("latest")
        logger.info("End of Predictor and Corrector training.")
    tb_logger.close()
コード例 #3
0
def main():
    #### options
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt', type=str, help='Path to option YMAL file.')
    parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
                        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = option.parse(args.opt, is_train=True)

    #### distributed training settings
    if args.launcher == 'none':  # disabled distributed training
        opt['dist'] = False
        rank = -1
        print('Disabled distributed training.')
    else:
        opt['dist'] = True
        init_dist()
        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

    #### loading resume state if exists
    if opt['path'].get('resume_state', None):
        # distributed resuming: all load into default GPU
        device_id = torch.cuda.current_device()
        resume_state = torch.load(opt['path']['resume_state'],
                                  map_location=lambda storage, loc: storage.cuda(device_id))
        option.check_resume(opt, resume_state['iter'])  # check resume options
    else:
        resume_state = None

    #### mkdir and loggers
    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0)
        if resume_state is None:
            print(opt['path'])
            util.mkdir_and_rename(
                opt['path']['experiments_root'])  # rename experiment folder if exists
            util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
                         and 'pretrain_model' not in key and 'resume' not in key and path is not None))

        # config loggers. Before it, the log will not work
        util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
                          screen=True, tofile=True)
        util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
                          screen=True, tofile=True)
        logger = logging.getLogger('base')
        logger.info(option.dict2str(opt))
        # tensorboard logger
        if opt['use_tb_logger'] and 'debug' not in opt['name']:
            version = float(torch.__version__[0:3])
            if version >= 1.1:  # PyTorch 1.1
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info(
                    'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
                from tensorboardX import SummaryWriter
            trial = 0
            while os.path.isdir('../Loggers/' + opt['name'] + '/' + str(trial)):
                trial += 1
            tb_logger = SummaryWriter(log_dir='../Loggers/' + opt['name'] + '/' + str(trial))
    else:
        util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
        logger = logging.getLogger('base')

    # convert to NoneDict, which returns None for missing keys
    opt = option.dict_to_nonedict(opt)

    # -------------------------------------------- ADDED --------------------------------------------
    l1_loss = torch.nn.L1Loss()
    mse_loss = torch.nn.MSELoss()
    calc_lpips = PerceptualLossLPIPS()
    if torch.cuda.is_available():
        l1_loss = l1_loss.cuda()
        mse_loss = mse_loss.cuda()
    # -----------------------------------------------------------------------------------------------

    #### random seed
    seed = opt['train']['manual_seed']
    if seed is None:
        seed = random.randint(1, 10000)
    if rank <= 0:
        logger.info('Random seed: {}'.format(seed))
    util.set_random_seed(seed)

    torch.backends.cudnn.benckmark = True
    # torch.backends.cudnn.deterministic = True

    #### create train and val dataloader
    dataset_ratio = 200  # enlarge the size of each epoch
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            train_set = create_dataset(dataset_opt)
            train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
            total_iters = int(opt['train']['niter'])
            total_epochs = int(math.ceil(total_iters / train_size))
            if opt['dist']:
                train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
                total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
            else:
                train_sampler = None
            train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
            if rank <= 0:
                logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
                    len(train_set), train_size))
                logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
                    total_epochs, total_iters))
        elif phase == 'val':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(val_set, dataset_opt, opt, None)
            if rank <= 0:
                logger.info('Number of val images in [{:s}]: {:d}'.format(
                    dataset_opt['name'], len(val_set)))
        else:
            raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
    assert train_loader is not None

    #### create model
    model = Model(opt)

    #### resume training
    if resume_state:
        logger.info('Resuming training from epoch: {}, iter: {}.'.format(
            resume_state['epoch'], resume_state['iter']))

        start_epoch = resume_state['epoch']
        current_step = resume_state['iter']
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        current_step = 0
        start_epoch = 0

    #### training
    logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
    for epoch in range(start_epoch, total_epochs + 1):
        if opt['dist']:
            train_sampler.set_epoch(epoch)
        train_bar = tqdm(train_loader, desc='[%d/%d]' % (epoch, total_epochs))
        for bus, train_data in enumerate(train_bar):

             # validation
            if epoch % opt['train']['val_freq'] == 0 and bus == 0 and rank <= 0:
                avg_ssim = avg_psnr = avg_lpips = val_pix_err_f = val_pix_err_nf = val_mean_color_err = 0.0
                print("into validation!")
                idx = 0
                val_bar = tqdm(val_loader, desc='[%d/%d]' % (epoch, total_epochs))
                for val_data in val_bar:
                    idx += 1
                    img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
                    img_dir = os.path.join(opt['path']['val_images'], img_name)
                    util.mkdir(img_dir)

                    model.feed_data(val_data)
                    model.test()

                    visuals = model.get_current_visuals()
                    sr_img = util.tensor2img(visuals['SR'])  # uint8
                    gt_img = util.tensor2img(visuals['GT'])  # uint8
                    lq_img = util.tensor2img(visuals['LQ'])  # uint8
                    #nr_img = util.tensor2img(visuals['NR'])  # uint8
                    #nf_img = util.tensor2img(visuals['NF'])  # uint8
                    #nh_img = util.tensor2img(visuals['NH'])  # uint8


                    #print("Great! images got into here.")

                    # Save SR images for reference
                    save_sr_img_path = os.path.join(img_dir,
                                                 '{:s}_{:d}_sr.png'.format(img_name, current_step))
                    save_nr_img_path = os.path.join(img_dir,
                                                 '{:s}_{:d}_lq.png'.format(img_name, current_step))
                    #save_nf_img_path = os.path.join(img_dir,
                                                # 'bs_{:s}_{:d}_nr.png'.format(img_name, current_step)) 
                    #save_nh_img_path = os.path.join(img_dir,
                                                # 'bs_{:s}_{:d}_nh.png'.format(img_name, current_step)) 
                    util.save_img(sr_img, save_sr_img_path)
                    util.save_img(lq_img, save_nr_img_path)
                    #util.save_img(nf_img, save_nf_img_path)
                    #util.save_img(nh_img, save_nh_img_path)


                    #print("Saved")
                    # calculate PSNR
                    gt_img = gt_img / 255.
                    sr_img = sr_img / 255.
                    #nf_img = nf_img / 255.
                    lq_img = lq_img / 255.
                    #cropped_lq_img = lq_img[crop_size:-crop_size, crop_size:-crop_size, :]
                    #cropped_nr_img = nr_img[crop_size:-crop_size, crop_size:-crop_size, :]
                    avg_psnr += util.calculate_psnr(sr_img * 255, gt_img * 255)
                    avg_ssim += util.calculate_ssim(sr_img * 255, gt_img * 255)
                    avg_lpips += calc_lpips(visuals['SR'], visuals['GT'])
                    #avg_psnr_n += util.calculate_psnr(cropped_lq_img * 255, cropped_nr_img * 255)

                    # ----------------------------------------- ADDED -----------------------------------------
                    val_pix_err_nf += l1_loss(visuals['SR'], visuals['GT'])
                    val_mean_color_err += mse_loss(visuals['SR'].mean(2).mean(1), visuals['GT'].mean(2).mean(1))
                    # -----------------------------------------------------------------------------------------
                
                
                avg_psnr = avg_psnr / idx
                avg_ssim = avg_ssim / idx
                avg_lpips = avg_lpips / idx
                val_pix_err_f /= idx
                val_pix_err_nf /= idx
                val_mean_color_err /= idx



                # log
                logger.info('# Validation # PSNR: {:.4e},'.format(avg_psnr))
                logger.info('# Validation # SSIM: {:.4e},'.format(avg_ssim))
                logger.info('# Validation # LPIPS: {:.4e},'.format(avg_lpips))
                logger_val = logging.getLogger('val')  # validation logger
                logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e} ssim: {:.4e} lpips: {:.4e}'.format(
                    epoch, current_step, avg_psnr, avg_ssim, avg_lpips))
                # tensorboard logger
                if opt['use_tb_logger'] and 'debug' not in opt['name']:
                    tb_logger.add_scalar('val_psnr', avg_psnr, current_step)
                    tb_logger.add_scalar('val_ssim', avg_ssim, current_step)
                    tb_logger.add_scalar('val_lpips', avg_lpips, current_step)
                    tb_logger.add_scalar('val_pix_err_nf', val_pix_err_nf, current_step)
                    tb_logger.add_scalar('val_mean_color_err', val_mean_color_err, current_step)

            current_step += 1
            if current_step > total_iters:
                break
            #### update learning rate
            model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])

            #### training
            model.feed_data(train_data)
            model.optimize_parameters(current_step)
            model.clear_data()
            #### tb_logger
            if current_step % opt['logger']['tb_freq'] == 0:
                logs = model.get_current_log()
                if opt['use_tb_logger'] and 'debug' not in opt['name']:
                    for k, v in logs.items():
                        if rank <= 0:
                            tb_logger.add_scalar(k, v, current_step)

            
            #### logger
            if epoch % opt['logger']['print_freq'] == 0  and epoch != 0 and bus == 0:
                logs = model.get_current_log()
                message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(
                    epoch, current_step, model.get_current_learning_rate())
                for k, v in logs.items():
                    message += '{:s}: {:.4e} '.format(k, v)
                if rank <= 0:
                    logger.info(message)

           
            #### save models and training states
            if epoch % opt['logger']['save_checkpoint_freq'] == 0 and epoch != 0 and bus == 0:
                if rank <= 0:
                    logger.info('Saving models and training states.')
                    model.save(current_step)
                    model.save_training_state(epoch, current_step)

    if rank <= 0:
        logger.info('Saving the final model.')
        model.save('latest')
        logger.info('End of training.')