def configure_loggers(opt=None): tofile = opt.get('logger', {}).get('save_logfile', True) if opt['is_train']: # config loggers. Before it, the log will not work util.get_root_logger(None, opt['path']['log'], 'train', level=logging.INFO, screen=True, tofile=tofile) util.get_root_logger('val', opt['path']['log'], 'val', level=logging.INFO, tofile=tofile) else: util.get_root_logger(None, opt['path']['log'], 'test', level=logging.INFO, screen=True, tofile=tofile) logger = util.get_root_logger() # 'base' logger.info(options.dict2str(opt)) # initialize tensorboard logger tb_logger = None if opt.get('use_tb_logger', False) and 'debug' not in opt['name']: version = float(torch.__version__[0:3]) log_dir = os.path.join(opt['path']['root'], 'tb_logger', opt['name']) # log_dir = os.path.join(opt['path']['experiments_root'], opt['name'], 'tb') # logdir_valid = os.path.join(opt['path']['root'], 'tb_logger', opt['name'] + 'valid') # logdir_valid = os.path.join(opt['path']['experiments_root'], opt['name'], 'tb_valid') if version >= 1.1: # PyTorch 1.1 # official PyTorch tensorboard try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter else: logger.info( 'You are using PyTorch {}. Using [tensorboardX].'.format( version)) from tensorboardX import SummaryWriter try: # for versions PyTorch > 1.1 and tensorboardX < 1.6 tb_logger = SummaryWriter(log_dir=log_dir) # tb_logger_valid = SummaryWriter(log_dir=logdir_valid) except: # for version tensorboardX >= 1.7 tb_logger = SummaryWriter(logdir=log_dir) # tb_logger_valid = SummaryWriter(logdir=logdir_valid) return {"tb_logger": tb_logger}
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to options file.') opt = options.parse(parser.parse_args().opt, is_train=False) util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G')) logger = util.get_root_logger(None, opt['path']['log'], 'test.log', level=logging.INFO, screen=True) logger = logging.getLogger('base') logger.info(options.dict2str(opt)) scale = opt.get('scale', 4) # Create test dataset and dataloader test_loaders = [] znorm = False # TMP # znorm_list = [] ''' video_list = os.listdir(cfg.testset_dir) for idx_video in range(len(video_list)): video_name = video_list[idx_video] # dataloader test_set = TestsetLoader(cfg, video_name) test_loader = DataLoader(test_set, num_workers=1, batch_size=1, shuffle=False) ''' for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) # Temporary, will turn znorm on for all the datasets. Will need to introduce a variable for each dataset and differentiate each one later in the loop. # if dataset_opt.get['znorm'] and znorm == False: # znorm = True znorm = dataset_opt.get('znorm', False) # znorm_list.apped(znorm) # Create model model = create_model(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() dataset_dir = os.path.join(opt['path']['results_root'], test_set_name) util.mkdir(dataset_dir) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] for data in test_loader: need_HR = False if test_loader.dataset.opt['dataroot_HR'] is None else True img_path = data['LR_path'][0] img_name = os.path.splitext(os.path.basename(img_path))[0] # tmp_vis(data['LR'][:,1,:,:,:], True) if opt.get('chop_forward', None): # data if len(data['LR'].size()) == 4: b, n_frames, h_lr, w_lr = data['LR'].size() LR_y_cube = data['LR'].view(b, -1, 1, h_lr, w_lr) # b, t, c, h, w elif len(data['LR'].size()) == 5: # for networks that work with 3 channel images _, n_frames, _, _, _ = data['LR'].size() LR_y_cube = data['LR'] # b, t, c, h, w # print(LR_y_cube.shape) # print(data['LR_bicubic'].shape) # crop borders to ensure each patch can be divisible by 2 # TODO: this is modcrop, not sure if really needed, check (the dataloader already does modcrop) _, _, _, h, w = LR_y_cube.size() h = int(h // 16) * 16 w = int(w // 16) * 16 LR_y_cube = LR_y_cube[:, :, :, :h, :w] if isinstance(data['LR_bicubic'], torch.Tensor): # SR_cb = data['LR_bicubic'][:, 1, :, :][:, :, :h * scale, :w * scale] SR_cb = data['LR_bicubic'][:, 1, :h * scale, :w * scale] # SR_cr = data['LR_bicubic'][:, 2, :, :][:, :, :h * scale, :w * scale] SR_cr = data['LR_bicubic'][:, 2, :h * scale, :w * scale] SR_y = chop_forward(LR_y_cube, model, scale, need_HR=need_HR).squeeze(0) # SR_y = np.array(SR_y.data.cpu()) if test_loader.dataset.opt.get('srcolors', None): print(SR_y.shape, SR_cb.shape, SR_cr.shape) sr_img = ycbcr_to_rgb(torch.stack((SR_y, SR_cb, SR_cr), -3)) else: sr_img = SR_y else: # data model.feed_data(data, need_HR=need_HR) # SR_y = net(LR_y_cube).squeeze(0) model.test() # test visuals = model.get_current_visuals(need_HR=need_HR) # ds = torch.nn.AvgPool2d(2, stride=2, count_include_pad=False) # tmp_vis(ds(visuals['SR']), True) # tmp_vis(visuals['SR'], True) if test_loader.dataset.opt.get('y_only', None) and test_loader.dataset.opt.get('srcolors', None): SR_cb = data['LR_bicubic'][:, 1, :, :] SR_cr = data['LR_bicubic'][:, 2, :, :] # tmp_vis(ds(SR_cb), True) # tmp_vis(ds(SR_cr), True) sr_img = ycbcr_to_rgb(torch.stack((visuals['SR'], SR_cb, SR_cr), -3)) else: sr_img = visuals['SR'] # if znorm the image range is [-1,1], Default: Image range is [0,1] # testing, each "dataset" can have a different name (not train, val or other) sr_img = tensor2np(sr_img, denormalize=znorm) # uint8 # save images suffix = opt['suffix'] if suffix: save_img_path = os.path.join(dataset_dir, img_name + suffix + '.png') else: save_img_path = os.path.join(dataset_dir, img_name + '.png') util.save_img(sr_img, save_img_path) # TODO: update to use metrics functions # calculate PSNR and SSIM if need_HR: # if znorm the image range is [-1,1], Default: Image range is [0,1] # testing, each "dataset" can have a different name (not train, val or other) gt_img = tensor2img(visuals['HR'], denormalize=znorm) # uint8 gt_img = gt_img / 255. sr_img = sr_img / 255. crop_border = test_loader.dataset.opt['scale'] cropped_sr_img = sr_img[crop_border:-crop_border, crop_border:-crop_border, :] cropped_gt_img = gt_img[crop_border:-crop_border, crop_border:-crop_border, :] psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255) ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) if gt_img.shape[2] == 3: # RGB image sr_img_y = bgr2ycbcr(sr_img, only_y=True) gt_img_y = bgr2ycbcr(gt_img, only_y=True) cropped_sr_img_y = sr_img_y[crop_border:-crop_border, crop_border:-crop_border] cropped_gt_img_y = gt_img_y[crop_border:-crop_border, crop_border:-crop_border] psnr_y = util.calculate_psnr(cropped_sr_img_y * 255, cropped_gt_img_y * 255) ssim_y = util.calculate_ssim(cropped_sr_img_y * 255, cropped_gt_img_y * 255) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.' \ .format(img_name, psnr, ssim, psnr_y, ssim_y)) else: logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, psnr, ssim)) else: logger.info(img_name) # TODO: update to use metrics functions if need_HR: # metrics # Average PSNR/SSIM results ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info('----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n' \ .format(test_set_name, ave_psnr, ave_ssim)) if test_results['psnr_y'] and test_results['ssim_y']: ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) logger.info('----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n' \ .format(ave_psnr_y, ave_ssim_y))
def main(): #### options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YMAL file.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt = option.parse(args.opt, is_train=True) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt['dist'] = False rank = -1 print('Disabled distributed training.') else: opt['dist'] = True init_dist() world_size = torch.distributed.get_world_size() rank = torch.distributed.get_rank() #### loading resume state if exists if opt['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load(opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt, resume_state['iter']) # check resume options else: resume_state = None #### mkdir and loggers if rank <= 0: # normal training (rank -1) OR distributed training (rank 0) if resume_state is None: print(opt['path']) util.mkdir_and_rename( opt['path']['experiments_root']) # rename experiment folder if exists util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key and path is not None)) # config loggers. Before it, the log will not work util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO, screen=True, tofile=True) util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: logger.info( 'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version)) from tensorboardX import SummaryWriter trial = 0 while os.path.isdir('../Loggers/' + opt['name'] + '/' + str(trial)): trial += 1 tb_logger = SummaryWriter(log_dir='../Loggers/' + opt['name'] + '/' + str(trial)) else: util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True) logger = logging.getLogger('base') # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) # -------------------------------------------- ADDED -------------------------------------------- l1_loss = torch.nn.L1Loss() mse_loss = torch.nn.MSELoss() calc_lpips = PerceptualLossLPIPS() if torch.cuda.is_available(): l1_loss = l1_loss.cuda() mse_loss = mse_loss.cuda() # ----------------------------------------------------------------------------------------------- #### random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) if rank <= 0: logger.info('Random seed: {}'.format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benckmark = True # torch.backends.cudnn.deterministic = True #### create train and val dataloader dataset_ratio = 200 # enlarge the size of each epoch for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size'])) total_iters = int(opt['train']['niter']) total_epochs = int(math.ceil(total_iters / train_size)) if opt['dist']: train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio))) else: train_sampler = None train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler) if rank <= 0: logger.info('Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) logger.info('Total epochs needed: {:d} for iters {:,d}'.format( total_epochs, total_iters)) elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, opt, None) if rank <= 0: logger.info('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None #### create model model = Model(opt) #### resume training if resume_state: logger.info('Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) start_epoch = resume_state['epoch'] current_step = resume_state['iter'] model.resume_training(resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 #### training logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step)) for epoch in range(start_epoch, total_epochs + 1): if opt['dist']: train_sampler.set_epoch(epoch) train_bar = tqdm(train_loader, desc='[%d/%d]' % (epoch, total_epochs)) for bus, train_data in enumerate(train_bar): # validation if epoch % opt['train']['val_freq'] == 0 and bus == 0 and rank <= 0: avg_ssim = avg_psnr = avg_lpips = val_pix_err_f = val_pix_err_nf = val_mean_color_err = 0.0 print("into validation!") idx = 0 val_bar = tqdm(val_loader, desc='[%d/%d]' % (epoch, total_epochs)) for val_data in val_bar: idx += 1 img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0] img_dir = os.path.join(opt['path']['val_images'], img_name) util.mkdir(img_dir) model.feed_data(val_data) model.test() visuals = model.get_current_visuals() sr_img = util.tensor2img(visuals['SR']) # uint8 gt_img = util.tensor2img(visuals['GT']) # uint8 lq_img = util.tensor2img(visuals['LQ']) # uint8 #nr_img = util.tensor2img(visuals['NR']) # uint8 #nf_img = util.tensor2img(visuals['NF']) # uint8 #nh_img = util.tensor2img(visuals['NH']) # uint8 #print("Great! images got into here.") # Save SR images for reference save_sr_img_path = os.path.join(img_dir, '{:s}_{:d}_sr.png'.format(img_name, current_step)) save_nr_img_path = os.path.join(img_dir, '{:s}_{:d}_lq.png'.format(img_name, current_step)) #save_nf_img_path = os.path.join(img_dir, # 'bs_{:s}_{:d}_nr.png'.format(img_name, current_step)) #save_nh_img_path = os.path.join(img_dir, # 'bs_{:s}_{:d}_nh.png'.format(img_name, current_step)) util.save_img(sr_img, save_sr_img_path) util.save_img(lq_img, save_nr_img_path) #util.save_img(nf_img, save_nf_img_path) #util.save_img(nh_img, save_nh_img_path) #print("Saved") # calculate PSNR gt_img = gt_img / 255. sr_img = sr_img / 255. #nf_img = nf_img / 255. lq_img = lq_img / 255. #cropped_lq_img = lq_img[crop_size:-crop_size, crop_size:-crop_size, :] #cropped_nr_img = nr_img[crop_size:-crop_size, crop_size:-crop_size, :] avg_psnr += util.calculate_psnr(sr_img * 255, gt_img * 255) avg_ssim += util.calculate_ssim(sr_img * 255, gt_img * 255) avg_lpips += calc_lpips(visuals['SR'], visuals['GT']) #avg_psnr_n += util.calculate_psnr(cropped_lq_img * 255, cropped_nr_img * 255) # ----------------------------------------- ADDED ----------------------------------------- val_pix_err_nf += l1_loss(visuals['SR'], visuals['GT']) val_mean_color_err += mse_loss(visuals['SR'].mean(2).mean(1), visuals['GT'].mean(2).mean(1)) # ----------------------------------------------------------------------------------------- avg_psnr = avg_psnr / idx avg_ssim = avg_ssim / idx avg_lpips = avg_lpips / idx val_pix_err_f /= idx val_pix_err_nf /= idx val_mean_color_err /= idx # log logger.info('# Validation # PSNR: {:.4e},'.format(avg_psnr)) logger.info('# Validation # SSIM: {:.4e},'.format(avg_ssim)) logger.info('# Validation # LPIPS: {:.4e},'.format(avg_lpips)) logger_val = logging.getLogger('val') # validation logger logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e} ssim: {:.4e} lpips: {:.4e}'.format( epoch, current_step, avg_psnr, avg_ssim, avg_lpips)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.add_scalar('val_psnr', avg_psnr, current_step) tb_logger.add_scalar('val_ssim', avg_ssim, current_step) tb_logger.add_scalar('val_lpips', avg_lpips, current_step) tb_logger.add_scalar('val_pix_err_nf', val_pix_err_nf, current_step) tb_logger.add_scalar('val_mean_color_err', val_mean_color_err, current_step) current_step += 1 if current_step > total_iters: break #### update learning rate model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter']) #### training model.feed_data(train_data) model.optimize_parameters(current_step) model.clear_data() #### tb_logger if current_step % opt['logger']['tb_freq'] == 0: logs = model.get_current_log() if opt['use_tb_logger'] and 'debug' not in opt['name']: for k, v in logs.items(): if rank <= 0: tb_logger.add_scalar(k, v, current_step) #### logger if epoch % opt['logger']['print_freq'] == 0 and epoch != 0 and bus == 0: logs = model.get_current_log() message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) if rank <= 0: logger.info(message) #### save models and training states if epoch % opt['logger']['save_checkpoint_freq'] == 0 and epoch != 0 and bus == 0: if rank <= 0: logger.info('Saving models and training states.') model.save(current_step) model.save_training_state(epoch, current_step) if rank <= 0: logger.info('Saving the final model.') model.save('latest') logger.info('End of training.')