def main(): parser = argparse.ArgumentParser(description='Baseline') parser.add_argument('--conf_path', type=str, metavar='conf_path', help='input the path of config file') parser.add_argument('--id', type=int, metavar='experiment_id', help='Experiment ID') args = parser.parse_args() option = Option(args.conf_path) option.manualSeed = args.id + 1 option.experimentID = option.experimentID + "{:0>2d}_repeat".format( args.id) if option.dataset in ["cifar100"]: generator = Generator(option) elif option.dataset in ["imagenet"]: generator = Generator_imagenet(option) else: assert False, "invalid data set" experiment = ExperimentDesign(generator, option) experiment.run()
def main(): parser = argparse.ArgumentParser(description='Baseline') parser.add_argument('conf_path', type=str, metavar='conf_path', help='input batch size for training (default: 64)') args = parser.parse_args() option = Option(args.conf_path) save_path = option.save_path experimentID = option.experimentID for i in range(0,1): option.experimentID = experimentID + "{:0>2d}_repeat".format(i + 1) option.save_path = save_path option.manualSeed = i + 1 experiment = ExperimentDesign(option) best_top1, best_top5 = experiment.run() experiment.logger.handlers = []
def main(): parser = argparse.ArgumentParser(description='Baseline') parser.add_argument('conf_path', type=str, metavar='conf_path', help='input batch size for training (default: 64)') parser.add_argument('id', type=int, metavar='experiment_id', help='Experiment ID') args = parser.parse_args() option = Option(args.conf_path) option.manualSeed = args.id + 1 option.experimentID = option.experimentID + "{:0>2d}_repeat".format( args.id + 1) experiment = ExperimentDesign(option) experiment.run()