コード例 #1
0
    def test_change_of_objective_is_reflected_in_low_level_solver(self):
        x = Variable('x', lb=-83.3, ub=1324422.)
        y = Variable('y', lb=-181133.3, ub=12000.)
        objective = Objective(0.3 * x + 0.4 * y, name='test', direction='max')
        self.model.objective = objective

        self.assertEqual((self.model.objective.expression -
                          (0.4 * y + 0.3 * x)).expand() - 0, 0)
        self.assertEqual(self.model.objective.direction, "max")

        self.assertEqual(glp_get_obj_coef(self.model.problem, x._index), 0.3)
        self.assertEqual(glp_get_obj_coef(self.model.problem, y._index), 0.4)
        for i in range(1, glp_get_num_cols(self.model.problem) + 1):
            if i != x._index and i != y._index:
                self.assertEqual(glp_get_obj_coef(self.model.problem, i), 0)
        z = Variable('z', lb=4, ub=4, type='integer')
        self.model.objective += 77. * z

        self.assertEqual((self.model.objective.expression -
                          (0.4 * y + 0.3 * x + 77.0 * z)).expand() - 0, 0)
        self.assertEqual(self.model.objective.direction, "max")

        self.assertEqual(glp_get_obj_coef(self.model.problem, x._index), 0.3)
        self.assertEqual(glp_get_obj_coef(self.model.problem, y._index), 0.4)
        self.assertEqual(glp_get_obj_coef(self.model.problem, z._index), 77.)
        for i in range(1, glp_get_num_cols(self.model.problem) + 1):
            if i != x._index and i != y._index and i != z._index:
                self.assertEqual(glp_get_obj_coef(self.model.problem, i), 0)
コード例 #2
0
    def _MakeMDFProblem(self):
        """Create a CVXOPT problem for finding the Maximal Thermodynamic
        Driving Force (MDF).

        Does not set the objective function... leaves that to the caller.

        Returns:
            the linear problem object, and the three types of variables as arrays
        """
        A, b, c, y, l = self._GetPrimalVariablesAndConstants()
        B = Variable('mdf')
        x = y + l + [B]
        lp = Model(name="MDF_PRIMAL")

        cnstr_names = ["driving_force_%02d" % j for j in range(self.Nr_active)] + \
                      ["covariance_var_ub_%02d" % j for j in range(self.Nr)] + \
                      ["covariance_var_lb_%02d" % j for j in range(self.Nr)] + \
                      ["log_conc_ub_%02d" % j for j in range(self.Nc)] + \
                      ["log_conc_lb_%02d" % j for j in range(self.Nc)]

        constraints = []
        for j in range(A.shape[0]):
            row = [A[j, i] * x[i] for i in range(A.shape[1])]
            constraints.append(
                Constraint(sum(row), ub=b[j, 0], name=cnstr_names[j]))

        lp.add(constraints)

        row = [c[i, 0] * x[i] for i in range(c.shape[0])]
        lp.objective = Objective(sum(row), direction='max')

        return lp, y, l, B
コード例 #3
0
    def _MakeMDFProblemDual(self):
        """Create a CVXOPT problem for finding the Maximal Thermodynamic
        Driving Force (MDF).

        Does not set the objective function... leaves that to the caller.

        Returns:
            the linear problem object, and the four types of variables as arrays
        """
        A, b, c, w, g, z, u = self._GetDualVariablesAndConstants()
        x = w + g + z + u
        lp = Model(name="MDF_DUAL")

        cnstr_names = ["y_%02d" % j for j in range(self.Nr)] + \
                      ["l_%02d" % j for j in range(self.Nc)] + \
                      ["MDF"]

        constraints = []
        for i in range(A.shape[1]):
            row = [A[j, i] * x[j] for j in range(A.shape[0])]
            constraints.append(
                Constraint(sum(row),
                           lb=c[i, 0],
                           ub=c[i, 0],
                           name=cnstr_names[i]))

        lp.add(constraints)

        row = [b[i, 0] * x[i] for i in range(A.shape[0])]
        lp.objective = Objective(sum(row), direction='min')

        return lp, w, g, z, u
コード例 #4
0
 def setUp(self):
     self.var1 = var1 = Variable("var1", lb=0, ub=1, type="continuous")
     self.var2 = var2 = Variable("var2", lb=0, ub=1, type="continuous")
     self.const1 = const1 = Constraint(0.5 * var1, lb=0, ub=1, name="c1")
     self.const2 = const2 = Constraint(0.1 * var2 + 0.4 * var1, name="c2")
     self.model = model = Model()
     model.add([var1, var2])
     model.add([const1, const2])
     model.objective = Objective(var1 + var2)
     model.update()
     self.json_string = json.dumps(model.to_json())
コード例 #5
0
    def _GetTotalEnergyProblem(self, min_driving_force=0.0, direction='min'):

        A, b, _c, y, l = self._GetPrimalVariablesAndConstants()
        x = y + l + [min_driving_force]
        lp = Model(name='MDF')

        constraints = []
        for j in range(A.shape[0]):
            row = [A[j, i] * x[i] for i in range(A.shape[1])]
            constraints.append(
                Constraint(sum(row), ub=b[j, 0], name='row_%d' % j))

        total_g0 = float(self.fluxes @ self.dG0_r_prime)
        total_reaction = self.S @ self.fluxes.T
        row = [total_reaction[i, 0] * x[i] for i in range(self.Nc)]
        total_g = total_g0 + sum(row)

        lp.add(constraints)
        lp.objective = Objective(total_g, direction=direction)

        return lp