コード例 #1
0
def test_sample_independent_n_startup_trial() -> None:
    study = optuna.multi_objective.create_study(
        directions=["minimize", "maximize"])
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    random.seed(128)
    past_trials = [
        frozen_trial_factory(
            i, [random.random(), random.random()]) for i in range(16)
    ]

    trial = multi_objective.trial.FrozenMultiObjectiveTrial(
        2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(n_startup_trials=16, seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials[:15]
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2, patch.object(
            optuna.multi_objective.samplers.RandomMultiObjectiveSampler,
            "sample_independent",
            return_value=1.0,
    ) as sample_method:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        sampler.sample_independent(study, trial, "param-a", dist)
    assert sample_method.call_count == 1

    sampler = MOTPEMultiObjectiveSampler(n_startup_trials=16, seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2, patch.object(
            optuna.multi_objective.samplers.RandomMultiObjectiveSampler,
            "sample_independent",
            return_value=1.0,
    ) as sample_method:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        sampler.sample_independent(study, trial, "param-a", dist)
    assert sample_method.call_count == 0
コード例 #2
0
ファイル: test_motpe.py プロジェクト: rhhc/optuna_begin
def test_sample_independent_prior() -> None:
    study = optuna.multi_objective.create_study(directions=["minimize", "maximize"])
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)

    random.seed(128)
    past_trials = [frozen_trial_factory(i, [random.random(), random.random()]) for i in range(16)]

    # Prepare a trial and a sample for later checks.
    trial = multi_objective.trial.FrozenMultiObjectiveTrial(2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        suggestion = sampler.sample_independent(study, trial, "param-a", dist)

    sampler = MOTPEMultiObjectiveSampler(consider_prior=False, seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion

    sampler = MOTPEMultiObjectiveSampler(prior_weight=0.5, seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion
コード例 #3
0
def test_sample_independent_uniform_distributions() -> None:
    # Prepare sample from uniform distribution for cheking other distributions.
    study = optuna.multi_objective.create_study(
        directions=["minimize", "maximize"])
    random.seed(128)
    past_trials = [
        frozen_trial_factory(
            i, [random.random(), random.random()]) for i in range(16)
    ]

    uni_dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    trial = multi_objective.trial.FrozenMultiObjectiveTrial(
        2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        uniform_suggestion = sampler.sample_independent(
            study, trial, "param-a", uni_dist)
    assert 1.0 <= uniform_suggestion < 100.0
コード例 #4
0
ファイル: test_motpe.py プロジェクト: rhhc/optuna_begin
def test_sample_independent_ignored_states() -> None:
    """Tests FAIL, RUNNING, and WAITING states are equally."""
    study = optuna.multi_objective.create_study(directions=["minimize", "maximize"])
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)

    suggestions = []
    for state in [
        optuna.trial.TrialState.FAIL,
        optuna.trial.TrialState.RUNNING,
        optuna.trial.TrialState.WAITING,
    ]:
        random.seed(128)
        state_fn = build_state_fn(state)
        past_trials = [
            frozen_trial_factory(i, [random.random(), random.random()], state_fn=state_fn)
            for i in range(32)
        ]
        trial = multi_objective.trial.FrozenMultiObjectiveTrial(
            2, frozen_trial_factory(32, [0, 0])
        )
        sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        suggestions.append(sampler.sample_independent(study, trial, "param-a", dist))

    assert len(set(suggestions)) == 1
コード例 #5
0
ファイル: test_motpe.py プロジェクト: rhhc/optuna_begin
def test_sample_int_uniform_distributions() -> None:
    """Test sampling from int distribution returns integer."""

    study = optuna.multi_objective.create_study(directions=["minimize", "maximize"])
    random.seed(128)

    def int_value_fn(idx: int) -> float:
        return random.randint(0, 100)

    int_dist = optuna.distributions.IntUniformDistribution(1, 100)
    past_trials = [
        frozen_trial_factory(
            i, [random.random(), random.random()], dist=int_dist, value_fn=int_value_fn
        )
        for i in range(16)
    ]

    trial = multi_objective.trial.FrozenMultiObjectiveTrial(2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        int_suggestion = sampler.sample_independent(study, trial, "param-a", int_dist)
    assert 1 <= int_suggestion <= 100
    assert isinstance(int_suggestion, int)
コード例 #6
0
ファイル: test_motpe.py プロジェクト: rhhc/optuna_begin
def test_sample_independent_categorical_distributions() -> None:
    """Test samples are drawn from the specified category."""

    study = optuna.multi_objective.create_study(directions=["minimize", "maximize"])
    random.seed(128)

    categories = [i * 0.3 + 1.0 for i in range(330)]

    def cat_value_fn(idx: int) -> float:
        return categories[random.randint(0, len(categories) - 1)]

    cat_dist = optuna.distributions.CategoricalDistribution(categories)
    past_trials = [
        frozen_trial_factory(
            i, [random.random(), random.random()], dist=cat_dist, value_fn=cat_value_fn
        )
        for i in range(16)
    ]

    trial = multi_objective.trial.FrozenMultiObjectiveTrial(2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        categorical_suggestion = sampler.sample_independent(study, trial, "param-a", cat_dist)
    assert categorical_suggestion in categories
コード例 #7
0
ファイル: test_motpe.py プロジェクト: rhhc/optuna_begin
def test_sample_independent_handle_unsuccessful_states(state: optuna.trial.TrialState) -> None:
    study = optuna.multi_objective.create_study(directions=["minimize", "maximize"])
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    random.seed(128)

    # Prepare sampling result for later tests.
    past_trials = [frozen_trial_factory(i, [random.random(), random.random()]) for i in range(32)]

    trial = multi_objective.trial.FrozenMultiObjectiveTrial(2, frozen_trial_factory(32, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        all_success_suggestion = sampler.sample_independent(study, trial, "param-a", dist)

    # Test unsuccessful trials are handled differently.
    state_fn = build_state_fn(state)
    past_trials = [
        frozen_trial_factory(i, [random.random(), random.random()], state_fn=state_fn)
        for i in range(32)
    ]

    trial = multi_objective.trial.FrozenMultiObjectiveTrial(2, frozen_trial_factory(32, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(study._storage, "get_all_trials", return_value=past_trials), patch.object(
        study._storage, "set_trial_system_attr", side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
        "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs", new_callable=PropertyMock
    ) as mock1, patch(
        "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
        new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        partial_unsuccessful_suggestion = sampler.sample_independent(study, trial, "param-a", dist)
    assert partial_unsuccessful_suggestion != all_success_suggestion
コード例 #8
0
def test_sample_independent_disrete_uniform_distributions() -> None:
    """Test samples from discrete have expected intervals."""

    study = optuna.multi_objective.create_study(
        directions=["minimize", "maximize"])
    random.seed(128)

    disc_dist = optuna.distributions.DiscreteUniformDistribution(
        1.0, 100.0, 0.1)

    def value_fn(idx: int) -> float:
        return int(random.random() * 1000) * 0.1

    past_trials = [
        frozen_trial_factory(
            i, [random.random(), random.random()],
            dist=disc_dist,
            value_fn=value_fn) for i in range(16)
    ]

    trial = multi_objective.trial.FrozenMultiObjectiveTrial(
        2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        discrete_uniform_suggestion = sampler.sample_independent(
            study, trial, "param-a", disc_dist)
    assert 1.0 <= discrete_uniform_suggestion <= 100.0
    assert abs(
        int(discrete_uniform_suggestion * 10) -
        discrete_uniform_suggestion * 10) < 1e-3
コード例 #9
0
def test_sample_independent_misc_arguments() -> None:
    study = optuna.multi_objective.create_study(
        directions=["minimize", "maximize"])
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    random.seed(128)
    past_trials = [
        frozen_trial_factory(
            i, [random.random(), random.random()]) for i in range(32)
    ]

    # Prepare a trial and a sample for later checks.
    trial = multi_objective.trial.FrozenMultiObjectiveTrial(
        2, frozen_trial_factory(16, [0, 0]))
    sampler = MOTPEMultiObjectiveSampler(seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        suggestion = sampler.sample_independent(study, trial, "param-a", dist)

    # Test misc. parameters.
    sampler = MOTPEMultiObjectiveSampler(n_ehvi_candidates=13, seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        assert sampler.sample_independent(study, trial, "param-a",
                                          dist) != suggestion

    sampler = MOTPEMultiObjectiveSampler(gamma=lambda _: 5, seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        assert sampler.sample_independent(study, trial, "param-a",
                                          dist) != suggestion

    sampler = MOTPEMultiObjectiveSampler(weights_above=lambda n: np.zeros(n),
                                         seed=0)
    attrs = MockSystemAttr()
    with patch.object(
            study._storage, "get_all_trials", return_value=past_trials
    ), patch.object(
            study._storage,
            "set_trial_system_attr",
            side_effect=attrs.set_trial_system_attr
    ), patch.object(study._storage, "get_trial", return_value=trial), patch(
            "optuna.multi_objective.trial.MultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock
    ) as mock1, patch(
            "optuna.multi_objective.trial.FrozenMultiObjectiveTrial.system_attrs",
            new_callable=PropertyMock,
    ) as mock2:
        mock1.return_value = attrs.value
        mock2.return_value = attrs.value
        assert sampler.sample_independent(study, trial, "param-a",
                                          dist) != suggestion