コード例 #1
0
    def __init__(self,
                 _obj_fun=obj_final_z,
                 _obj_grad=obj_grad_final_z,
                 _atm=None,
                 _min_bank=-np.deg2rad(45.),
                 _max_bank=np.deg2rad(45.),
                 x0=-25,
                 y0=0,
                 z0=1,
                 psi0=0):
        self.duration = 40
        self.num_nodes = 2000  # time discretization
        self.interval_value = self.duration / (self.num_nodes - 1)
        print('solver: interval_value: {:.3f}s ({:.1f}hz)'.format(
            self.interval_value, 1. / self.interval_value))
        self.atm = _atm if _atm is not None else atm0()

        self._slice_x = slice(0 * self.num_nodes, 1 * self.num_nodes, 1)
        self._slice_y = slice(1 * self.num_nodes, 2 * self.num_nodes, 1)
        self._slice_z = slice(2 * self.num_nodes, 3 * self.num_nodes, 1)
        self._slice_psi = slice(3 * self.num_nodes, 4 * self.num_nodes, 1)
        self._slice_phi = slice(4 * self.num_nodes, 5 * self.num_nodes, 1)

        # Specify the symbolic instance constraints, i.e. initial and end conditions.
        instance_constraints = (x(0.0) - x0, y(0.0) - y0, z(0.) - z0,
                                psi(0.) - psi0)
        #theta(duration) - target_angle,
        bounds = {phi(t): (_min_bank, _max_bank), y(t): (-50, 50)}
        #bounds = {phi(t): (-0.1, _max_bank)}
        # Create an optimization problem.
        self.prob = Problem(
            lambda _free: _obj_fun(self.num_nodes, self.interval_value, _free),
            lambda _free: _obj_grad(self.num_nodes, self.interval_value, _free
                                    ),
            #eom,
            get_eom(self.atm),
            state_symbols,
            self.num_nodes,
            self.interval_value,
            known_parameter_map=par_map,
            instance_constraints=instance_constraints,
            bounds=bounds,
            parallel=False)
コード例 #2
0
#                         q3(0.0),
#                         q3(duration))
# =============================================================================

# =============================================================================
instance_constraints = (q0(0.0), q0(duration) - target_position, q1(0.0),
                        q1(duration), q2(0.0), q2(duration) - target_angle,
                        q3(0.0), q3(duration))
# =============================================================================

# Create an optimization problem.
prob = Problem(obj,
               obj_grad,
               eom,
               state_symbols,
               num_nodes,
               interval_value,
               known_parameter_map=par_map,
               instance_constraints=instance_constraints,
               bounds={u(t): (-1000.0, 1000.0)})

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

# Make some plots
prob.plot_trajectories(solution)
#prob.plot_constraint_violations(solution)
prob.plot_objective_value()
コード例 #3
0
    L2(t): np.concatenate([np.ones(num_nodes / 2),
                           np.zeros(num_nodes / 2)]),
    L3(t): np.concatenate([np.zeros(num_nodes / 2),
                           np.zeros(num_nodes / 2)]),
    L4(t): np.concatenate([np.zeros(num_nodes / 2),
                           np.zeros(num_nodes / 2)]),
    L5(t): np.concatenate([np.zeros(num_nodes / 2),
                           np.ones(num_nodes / 2)]),
}

# Create an optimization problem.
prob = Problem(obj,
               obj_grad,
               eom,
               state_symbols,
               num_nodes,
               interval_value,
               instance_constraints=instance_constraints,
               bounds=bounds,
               known_trajectory_map=known_trajectory_map)

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

# Make some plots
prob.plot_trajectories(solution)

plt.show()
コード例 #4
0
def obj_grad(free):
    grad = np.zeros_like(free)
    grad[:num_nodes] = 2.0 * interval * (free[:num_nodes] - y1_m)
    return grad


# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (y1(0.0), y2(0.0) - np.pi)

# Create an optimization problem.
prob = Problem(obj,
               obj_grad,
               eom,
               state_symbols,
               num_nodes,
               interval,
               known_parameter_map=par_map,
               known_trajectory_map={T(t): time},
               instance_constraints=instance_constraints,
               integration_method='midpoint')

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

known_msg = "Known value of p = {}".format(np.pi)
identified_msg = "Identified value of p = {}".format(solution[-1])
divider = '=' * max(len(known_msg), len(identified_msg))
コード例 #5
0
ファイル: single_int.py プロジェクト: blandry/smt_manip
    grad = np.zeros_like(free)
    grad[2 * num_nodes:] = 2.0 * interval_value * free[2 * num_nodes:]
    return grad


# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (x(0.0), x(duration) - 1.0, y(0.0), y(duration))

# Create an optimization problem.
prob = Problem(obj,
               obj_grad,
               eom,
               state_symbols,
               num_nodes,
               interval_value,
               instance_constraints=instance_constraints,
               bounds={
                   ux(t): (-10, 10),
                   uy(t): (-10, 10),
                   y(t): (0, 0)
               })

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

# Make some plots
prob.plot_trajectories(solution)
コード例 #6
0
def obj_grad(free):
    grad = np.zeros_like(free)
    grad[2 * num_nodes:] = 2.0 * interval_value * free[2 * num_nodes:]
    return grad  # 2T


# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (x(0.0), x(duration) - target_position, xdot(0.0),
                        xdot(duration))

# Create an optimization problem.  THIS CAUSES SPYDER ISSUES
prob = Problem(obj,
               obj_grad,
               eom,
               state_symbols,
               num_nodes,
               interval_value,
               instance_constraints=instance_constraints,
               bounds={u(t): (-10.0, 30.0)})

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

# Make some plots
prob.plot_trajectories(solution)
prob.plot_constraint_violations(solution)
prob.plot_objective_value()
コード例 #7
0
def obj_grad(free):
    grad = np.zeros_like(free)
    grad[2 * num_nodes:] = 2.0 * interval_value * free[2 * num_nodes:]
    return grad

# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (theta(0.0),
                        theta(duration) - target_angle,
                        omega(0.0),
                        omega(duration))

# Create an optimization problem.
prob = Problem(obj, obj_grad, eom, state_symbols, num_nodes, interval_value,
               known_parameter_map=par_map,
               instance_constraints=instance_constraints,
               bounds={T(t): (-2.0, 2.0)})

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

# Make some plots
prob.plot_trajectories(solution)
prob.plot_constraint_violations(solution)
prob.plot_objective_value()

# Display animation
if not building_docs():
コード例 #8
0
def main(initial_guess, do_plot=False):

    if building_docs:
        do_plot = True

    # Specify the symbolic equations of motion.
    p, t = sym.symbols('p, t')
    y1, y2 = [f(t) for f in sym.symbols('y1, y2', cls=sym.Function)]
    y = sym.Matrix([y1, y2])
    f = sym.Matrix([y2, -p * sym.sin(y1)])
    eom = y.diff(t) - f

    # Generate some data by integrating the equations of motion.
    duration = 50.0
    num_nodes = 5000
    interval = duration / (num_nodes - 1)
    time = np.linspace(0.0, duration, num=num_nodes)

    p_val = 10.0
    y0 = [np.pi / 6.0, 0.0]

    def eval_f(y, t, p):
        return np.array([y[1], -p * np.sin(y[0])])

    y_meas = odeint(eval_f, y0, time, args=(p_val,))
    y1_meas = y_meas[:, 0]
    y2_meas = y_meas[:, 1]

    # Add measurement noise.
    y1_meas += np.random.normal(scale=0.05, size=y1_meas.shape)
    y2_meas += np.random.normal(scale=0.1, size=y2_meas.shape)

    # Setup the optimization problem to minimize the error in the simulated
    # angle and the measured angle.
    def obj(free):
        """Minimize the error in the angle, y1."""
        return interval * np.sum((y1_meas - free[:num_nodes])**2)

    def obj_grad(free):
        grad = np.zeros_like(free)
        grad[:num_nodes] = 2.0 * interval * (free[:num_nodes] - y1_meas)
        return grad

    # The midpoint integration method is preferable to the backward Euler
    # method because no artificial damping is introduced.
    prob = Problem(obj, obj_grad, eom, (y1, y2), num_nodes, interval,
                   integration_method='midpoint')

    num_states = len(y)

    if initial_guess == 'zero':
        print('Using all zeros for the initial guess.')
        # All zeros.
        initial_guess = np.zeros(num_states * num_nodes + 1)
    elif initial_guess == 'randompar':
        print(('Using all zeros for the trajectories initial guess and a '
               'random positive value for the parameter.'))
        # Zeros for the state trajectories and a random positive value for
        # the parameter.
        initial_guess = np.hstack((np.zeros(num_states * num_nodes), 50.0 *
                                   np.random.random(1)))
    elif initial_guess == 'random':
        print('Using random values for the initial guess.')
        # Random values for all unknowns.
        initial_guess = np.hstack((np.random.normal(scale=5.0,
                                                    size=num_states *
                                                    num_nodes), 50.0 *
                                   np.random.random(1)))
    elif initial_guess == 'sysid':
        print(('Using noisy measurements for the trajectory initial guess and '
               'a random positive value for the parameter.'))
        # Give noisy measurements as the initial state guess and a random
        # positive values as the parameter guess.
        initial_guess = np.hstack((y1_meas, y2_meas, 100.0 *
                                   np.random.random(1)))
    elif initial_guess == 'known':
        print('Using the known solution as the initial guess.')
        # Known solution as initial guess.
        initial_guess = np.hstack((y1_meas, y2_meas, 10.0))

    # Find the optimal solution.
    solution, info = prob.solve(initial_guess)
    p_sol = solution[-1]

    # Print the result.
    known_msg = "Known value of p = {}".format(p_val)
    guess_msg = "Initial guess for p = {}".format(initial_guess[-1])
    identified_msg = "Identified value of p = {}".format(p_sol)
    divider = '=' * max(len(known_msg), len(identified_msg))

    print(divider)
    print(known_msg)
    print(guess_msg)
    print(identified_msg)
    print(divider)

    # Simulate with the identified parameter.
    y_sim = odeint(eval_f, y0, time, args=(p_sol,))
    y1_sim = y_sim[:, 0]
    y2_sim = y_sim[:, 1]

    if do_plot:

        # Plot results
        fig_y1, axes_y1 = plt.subplots(3, 1)

        legend = ['measured', 'initial guess',
                  'direct collocation solution', 'identified simulated']

        axes_y1[0].plot(time, y1_meas, '.k',
                        time, initial_guess[:num_nodes], '.b',
                        time, solution[:num_nodes], '.r',
                        time, y1_sim, 'g')
        axes_y1[0].set_xlabel('Time [s]')
        axes_y1[0].set_ylabel('y1 [rad]')
        axes_y1[0].legend(legend)

        axes_y1[1].set_title('Initial Guess Constraint Violations')
        axes_y1[1].plot(prob.con(initial_guess)[:num_nodes - 1])
        axes_y1[2].set_title('Solution Constraint Violations')
        axes_y1[2].plot(prob.con(solution)[:num_nodes - 1])

        plt.tight_layout()

        fig_y2, axes_y2 = plt.subplots(3, 1)

        axes_y2[0].plot(time, y2_meas, '.k',
                        time, initial_guess[num_nodes:-1], '.b',
                        time, solution[num_nodes:-1], '.r',
                        time, y2_sim, 'g')
        axes_y2[0].set_xlabel('Time [s]')
        axes_y2[0].set_ylabel('y2 [rad]')
        axes_y2[0].legend(legend)

        axes_y2[1].set_title('Initial Guess Constraint Violations')
        axes_y2[1].plot(prob.con(initial_guess)[num_nodes - 1:])
        axes_y2[2].set_title('Solution Constraint Violations')
        axes_y2[2].plot(prob.con(solution)[num_nodes - 1:])

        plt.tight_layout()

        plt.show()
コード例 #9
0
ファイル: betts2003.py プロジェクト: HuaweiWang/opty

def obj_grad(free):
    grad = np.zeros_like(free)
    grad[:num_nodes] = 2.0 * interval * (free[:num_nodes] - y1_m)
    return grad

# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (y1(0.0), y2(0.0) - np.pi)

# Create an optimization problem.
prob = Problem(obj, obj_grad,
               eom, state_symbols,
               num_nodes, interval,
               known_parameter_map=par_map,
               known_trajectory_map={T(t): time},
               instance_constraints=instance_constraints,
               integration_method='midpoint')

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

known_msg = "Known value of p = {}".format(np.pi)
identified_msg = "Identified value of p = {}".format(solution[-1])
divider = '=' * max(len(known_msg), len(identified_msg))

print(divider)
コード例 #10
0
class Planner:
    def __init__(self,
                 _obj_fun=obj_final_z,
                 _obj_grad=obj_grad_final_z,
                 _atm=None,
                 _min_bank=-np.deg2rad(45.),
                 _max_bank=np.deg2rad(45.),
                 x0=-25,
                 y0=0,
                 z0=1,
                 psi0=0):
        self.duration = 40
        self.num_nodes = 2000  # time discretization
        self.interval_value = self.duration / (self.num_nodes - 1)
        print('solver: interval_value: {:.3f}s ({:.1f}hz)'.format(
            self.interval_value, 1. / self.interval_value))
        self.atm = _atm if _atm is not None else atm0()

        self._slice_x = slice(0 * self.num_nodes, 1 * self.num_nodes, 1)
        self._slice_y = slice(1 * self.num_nodes, 2 * self.num_nodes, 1)
        self._slice_z = slice(2 * self.num_nodes, 3 * self.num_nodes, 1)
        self._slice_psi = slice(3 * self.num_nodes, 4 * self.num_nodes, 1)
        self._slice_phi = slice(4 * self.num_nodes, 5 * self.num_nodes, 1)

        # Specify the symbolic instance constraints, i.e. initial and end conditions.
        instance_constraints = (x(0.0) - x0, y(0.0) - y0, z(0.) - z0,
                                psi(0.) - psi0)
        #theta(duration) - target_angle,
        bounds = {phi(t): (_min_bank, _max_bank), y(t): (-50, 50)}
        #bounds = {phi(t): (-0.1, _max_bank)}
        # Create an optimization problem.
        self.prob = Problem(
            lambda _free: _obj_fun(self.num_nodes, self.interval_value, _free),
            lambda _free: _obj_grad(self.num_nodes, self.interval_value, _free
                                    ),
            #eom,
            get_eom(self.atm),
            state_symbols,
            self.num_nodes,
            self.interval_value,
            known_parameter_map=par_map,
            instance_constraints=instance_constraints,
            bounds=bounds,
            parallel=False)

    def configure(self, tol=1e-8, max_iter=3000):
        # https://coin-or.github.io/Ipopt/OPTIONS.html
        self.prob.addOption('tol', tol)  # default 1e-8
        self.prob.addOption('max_iter', max_iter)  # default 3000

    def run(self):

        # Use a random positive initial guess.
        initial_guess = np.random.randn(self.prob.num_free)
        # Find the optimal solution.
        self.solution, info = self.prob.solve(initial_guess)
        self.interpret_solution()

    def interpret_solution(self):
        self.sol_time = np.linspace(0.0, self.duration, num=self.num_nodes)
        self.sol_x = self.solution[self._slice_x]
        self.sol_y = self.solution[self._slice_y]
        self.sol_z = self.solution[self._slice_z]
        self.sol_psi = self.solution[self._slice_psi]
        self.sol_phi = self.solution[self._slice_phi]
        self.sol_v = par_map[v] * np.ones(self.num_nodes)

    def save_solution(self, filename):
        print('saving {}'.format(filename))
        pickle.dump(self.solution, open(filename, "wb"))

    def load_solution(self, filename):
        print('loading {}'.format(filename))
        self.solution = pickle.load(open(filename, "rb"))
        self.interpret_solution()

    def run_or_load(self, filename, force_run=False):
        if force_run or not os.path.exists(filename):
            self.run()
            self.save_solution(filename)
        else:
            self.load_solution(filename)
コード例 #11
0
ファイル: vyasarayani2011.py プロジェクト: HuaweiWang/opty
def main(initial_guess, do_plot=False):

    # Specify the symbolic equations of motion.
    p, t = sym.symbols('p, t')
    y1, y2 = [f(t) for f in sym.symbols('y1, y2', cls=sym.Function)]
    y = sym.Matrix([y1, y2])
    f = sym.Matrix([y2, -p * sym.sin(y1)])
    eom = y.diff(t) - f

    # Generate some data by integrating the equations of motion.
    duration = 50.0
    num_nodes = 5000
    interval = duration / (num_nodes - 1)
    time = np.linspace(0.0, duration, num=num_nodes)

    p_val = 10.0
    y0 = [np.pi / 6.0, 0.0]

    def eval_f(y, t, p):
        return np.array([y[1], -p * np.sin(y[0])])

    y_meas = odeint(eval_f, y0, time, args=(p_val,))
    y1_meas = y_meas[:, 0]
    y2_meas = y_meas[:, 1]

    # Add measurement noise.
    y1_meas += np.random.normal(scale=0.05, size=y1_meas.shape)
    y2_meas += np.random.normal(scale=0.1, size=y2_meas.shape)

    # Setup the optimization problem to minimize the error in the simulated
    # angle and the measured angle.
    def obj(free):
        """Minimize the error in the angle, y1."""
        return interval * np.sum((y1_meas - free[:num_nodes])**2)


    def obj_grad(free):
        grad = np.zeros_like(free)
        grad[:num_nodes] = 2.0 * interval * (free[:num_nodes] - y1_meas)
        return grad

    # The midpoint integration method is preferable to the backward Euler
    # method because no artificial damping is introduced.
    prob = Problem(obj, obj_grad, eom, (y1, y2), num_nodes, interval,
                integration_method='midpoint')

    # Set some IPOPT options.
    prob.addOption('linear_solver', 'ma57')

    num_states = len(y)

    if initial_guess == 'zero':
        # All zeros.
        initial_guess = np.zeros(num_states * num_nodes + 1)
    elif initial_guess == 'randompar':
        # Zeros for the state trajectories and a random positive value for
        # the parameter.
        initial_guess = np.hstack((np.zeros(num_states * num_nodes), 50.0 *
                                   np.random.random(1)))
    elif initial_guess == 'random':
        # Random values for all unknowns.
        initial_guess = np.hstack((np.random.normal(scale=5.0,
                                                    size=num_states *
                                                    num_nodes), 50.0 *
                                   np.random.random(1)))
    elif initial_guess == 'sysid':
        # Give noisy measurements as the initial state guess and a random
        # positive values as the parameter guess.
        initial_guess = np.hstack((y1_meas, y2_meas, 100.0 *
                                   np.random.random(1)))
    elif initial_guess == 'known':
        # Known solution as initial guess.
        initial_guess = np.hstack((y1_meas, y2_meas, 10.0))

    # Find the optimal solution.
    solution, info = prob.solve(initial_guess)
    p_sol = solution[-1]

    # Print the result.
    known_msg = "Known value of p = {}".format(p_val)
    guess_msg = "Initial guess for p = {}".format(initial_guess[-1])
    identified_msg = "Identified value of p = {}".format(p_sol)
    divider = '=' * max(len(known_msg), len(identified_msg))

    print(divider)
    print(known_msg)
    print(guess_msg)
    print(identified_msg)
    print(divider)

    # Simulate with the identified parameter.
    y_sim = odeint(eval_f, y0, time, args=(p_sol,))
    y1_sim = y_sim[:, 0]
    y2_sim = y_sim[:, 1]

    if do_plot:

        # Plot results
        fig_y1, axes_y1 = plt.subplots(3, 1)

        legend = ['measured', 'initial guess',
                  'direct collocation solution', 'identified simulated']

        axes_y1[0].plot(time, y1_meas, '.k',
                        time, initial_guess[:num_nodes], '.b',
                        time, solution[:num_nodes], '.r',
                        time, y1_sim, 'g')
        axes_y1[0].set_xlabel('Time [s]')
        axes_y1[0].set_ylabel('y1 [rad]')
        axes_y1[0].legend(legend)

        axes_y1[1].set_title('Initial Guess Constraint Violations')
        axes_y1[1].plot(prob.con(initial_guess)[:num_nodes - 1])
        axes_y1[2].set_title('Solution Constraint Violations')
        axes_y1[2].plot(prob.con(solution)[:num_nodes - 1])

        plt.tight_layout()

        fig_y2, axes_y2 = plt.subplots(3, 1)

        axes_y2[0].plot(time, y2_meas, '.k',
                        time, initial_guess[num_nodes:-1], '.b',
                        time, solution[num_nodes:-1], '.r',
                        time, y2_sim, 'g')
        axes_y2[0].set_xlabel('Time [s]')
        axes_y2[0].set_ylabel('y2 [rad]')
        axes_y2[0].legend(legend)

        axes_y2[1].set_title('Initial Guess Constraint Violations')
        axes_y2[1].plot(prob.con(initial_guess)[num_nodes - 1:])
        axes_y2[2].set_title('Solution Constraint Violations')
        axes_y2[2].plot(prob.con(solution)[num_nodes - 1:])

        plt.tight_layout()

        plt.show()
コード例 #12
0
ファイル: pendulum_swing_up.py プロジェクト: RahidZaman/opty
def obj_grad(free):
    grad = np.zeros_like(free)
    grad[2 * num_nodes:] = 2.0 * interval_value * free[2 * num_nodes:]
    return grad

# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (theta(0.0),
                        theta(duration) - target_angle,
                        omega(0.0),
                        omega(duration))

# Create an optimization problem.
prob = Problem(obj, obj_grad, eom, state_symbols, num_nodes, interval_value,
               known_parameter_map=par_map,
               instance_constraints=instance_constraints,
               bounds={T(t): (-1.5, 1.5)})

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

# Plot trajectories
time = np.linspace(0.0, duration, num=num_nodes)

angle = solution[:num_nodes]
rate = solution[num_nodes:2 * num_nodes]
torque = solution[2 * num_nodes:]
コード例 #13
0
ファイル: park2004.py プロジェクト: olzhas/opty
        grad = np.zeros_like(free)
        grad[:4 *
             num_nodes] = 2.0 * interval * (free[:4 * num_nodes] - x_meas_vec)
        return grad

    bounds = {}
    for g in h.gain_symbols:
        bounds[g] = (0.0, 1.0)

    prob = Problem(obj,
                   obj_grad,
                   h.first_order_implicit(),
                   h.states(),
                   num_nodes,
                   interval,
                   known_parameter_map=h.closed_loop_par_map,
                   known_trajectory_map={
                       h.specified['platform_acceleration']: accel_meas
                   },
                   bounds=bounds,
                   time_symbol=h.time,
                   integration_method='midpoint')

    initial_guess = np.hstack(
        (x_meas_vec, (h.gain_scale_factors * h.numerical_gains).flatten()))
    initial_guess = np.hstack((x_meas_vec, np.random.random(8)))
    initial_guess = np.hstack((x_meas_vec, np.zeros(8)))
    initial_guess = np.zeros(prob.num_free)

    # Find the optimal solution.
    solution, info = prob.solve(initial_guess)
コード例 #14
0
ファイル: park2004.py プロジェクト: HuaweiWang/opty
    def obj_grad(free):
        grad = np.zeros_like(free)
        grad[:4 * num_nodes] = 2.0 * interval * (free[:4 * num_nodes] -
                                                 x_meas_vec)
        return grad

    bounds = {}
    for g in h.gain_symbols:
        bounds[g] = (0.0, 1.0)

    prob = Problem(obj, obj_grad,
                   h.first_order_implicit(),
                   h.states(),
                   num_nodes, interval,
                   known_parameter_map=h.closed_loop_par_map,
                   known_trajectory_map={h.specified['platform_acceleration']: accel_meas},
                   bounds=bounds,
                   time_symbol=h.time,
                   integration_method='midpoint')

    initial_guess = np.hstack((x_meas_vec, (h.gain_scale_factors *
                                            h.numerical_gains).flatten()))
    initial_guess = np.hstack((x_meas_vec, np.random.random(8)))
    initial_guess = np.hstack((x_meas_vec, np.zeros(8)))
    initial_guess = np.zeros(prob.num_free)

    # Find the optimal solution.
    solution, info = prob.solve(initial_guess)
    p_sol = solution[-8:]
コード例 #15
0
def obj_grad(free):
    grad = np.zeros_like(free)
    grad[:num_nodes] = 2.0 * interval * (free[:num_nodes] - y1_m)
    return grad


# Specify the symbolic instance constraints, i.e. initial and end
# conditions.
instance_constraints = (y1(0.0), y2(0.0) - np.pi)

# Create an optimization problem.
prob = Problem(obj,
               obj_grad,
               eom,
               state_symbols,
               num_nodes,
               interval,
               known_parameter_map=par_map,
               known_trajectory_map={T(t): time},
               instance_constraints=instance_constraints,
               integration_method='midpoint')

# Use a random positive initial guess.
initial_guess = np.random.randn(prob.num_free)

# Find the optimal solution.
solution, info = prob.solve(initial_guess)

known_msg = "Known value of p = {}".format(np.pi)
identified_msg = "Identified value of p = {}".format(solution[-1])
divider = '=' * max(len(known_msg), len(identified_msg))