def test_isa_params_setter(): new_isa = isa.ISA() try: new_isa.w = "a" except: new_isa.w = 0.7 try: new_isa.w = -1 except: new_isa.w = 0.7 assert new_isa.w == 0.7 try: new_isa.tau = "b" except: new_isa.tau = 0.3 try: new_isa.tau = -1 except: new_isa.tau = 0.3 assert new_isa.tau == 0.3
def test_isa_params(): params = {"w": 0.7, "tau": 0.3} new_isa = isa.ISA(params=params) assert new_isa.w == 0.7 assert new_isa.tau == 0.3
def test_isa_params(): params = { 'w': 0.7, 'tau': 0.3 } new_isa = isa.ISA(params=params) assert new_isa.w == 0.7 assert new_isa.tau == 0.3
def test_isa_update(): def square(x): return np.sum(x**2) search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_isa = isa.ISA() new_isa.compile(search_space) for _ in range(10): new_isa.update(search_space, square)
def test_isa_evaluate(): def square(x): return np.sum(x**2) search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_isa = isa.ISA() new_isa.compile(search_space) new_isa.evaluate(search_space, square) assert search_space.best_agent.fit != constant.FLOAT_MAX
def test_isa_compile(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_isa = isa.ISA() new_isa.compile(search_space) try: new_isa.local_position = 1 except: new_isa.local_position = np.array([1]) assert new_isa.local_position == 1 try: new_isa.velocity = 1 except: new_isa.velocity = np.array([1]) assert new_isa.velocity == 1