def check_data(self): self.Error.clear() if isinstance(self.data, Table) and \ isinstance(self.selected_data, Table): if len(self.selected_data) == 0: self.Error.empty_selection() self.clear() return # keep only BoW features bow_domain = self.get_bow_domain() if len(bow_domain.attributes) == 0: self.Error.no_bow_features() self.clear() return self.data = Corpus.from_table(bow_domain, self.data) self.selected_data_transformed = Corpus.from_table( bow_domain, self.selected_data) if np_sp_sum(self.selected_data_transformed.X) == 0: self.Error.no_words_overlap() self.clear() elif len(self.data) == len(self.selected_data): self.Error.all_selected() self.clear() else: self.apply() else: self.clear()
def filter_and_display(self): self.spin_p.setEnabled(self.filter_by_p) self.spin_fdr.setEnabled(self.filter_by_fdr) self.sig_words.clear() if self.selected_data_transformed is None: # do nothing when no Data return count = 0 if self.words: for word, pval, fval in zip(self.words, self.p_values, self.fdr_values): if (not self.filter_by_p or pval <= self.filter_p_value) and \ (not self.filter_by_fdr or fval <= self.filter_fdr_value): it = EATreeWidgetItem(word, pval, fval, self.sig_words) self.sig_words.addTopLevelItem(it) count += 1 for i in range(len(self.cols)): self.sig_words.resizeColumnToContents(i) self.info_all.setText('Cluster words: {}'.format( len(self.selected_data_transformed.domain.attributes))) self.info_sel.setText('Selected words: {}'.format( np.count_nonzero( np_sp_sum(self.selected_data_transformed.X, axis=0)))) if not self.filter_by_p and not self.filter_by_fdr: self.info_fil.setText('After filtering:') self.info_fil.setEnabled(False) else: self.info_fil.setEnabled(True) self.info_fil.setText('After filtering: {}'.format(count))
def check_data(self): self.Error.clear() if isinstance(self.data, Table) and \ isinstance(self.selected_data, Table): if len(self.selected_data) == 0: self.Error.empty_selection() self.clear() return # keep only BoW features bow_domain = self.get_bow_domain() if len(bow_domain.attributes) == 0: self.Error.no_bow_features() self.clear() return self.data = Corpus.from_table(bow_domain, self.data) self.selected_data_transformed = Corpus.from_table(bow_domain, self.selected_data) if np_sp_sum(self.selected_data_transformed.X) == 0: self.Error.no_words_overlap() self.clear() elif len(self.data) == len(self.selected_data): self.Error.all_selected() self.clear() else: self.apply() else: self.clear()
def filter_and_display(self): self.spin_p.setEnabled(self.filter_by_p) self.spin_fdr.setEnabled(self.filter_by_fdr) self.sig_words.clear() if self.selected_data_transformed is None: # do nothing when no Data return count = 0 if self.words: for word, pval, fval in zip(self.words, self.p_values, self.fdr_values): if (not self.filter_by_p or pval <= self.filter_p_value) and \ (not self.filter_by_fdr or fval <= self.filter_fdr_value): it = EATreeWidgetItem(word, pval, fval, self.sig_words) self.sig_words.addTopLevelItem(it) count += 1 for i in range(len(self.cols)): self.sig_words.resizeColumnToContents(i) self.info_all.setText('Cluster words: {}'.format(len(self.selected_data_transformed.domain.attributes))) self.info_sel.setText('Selected words: {}'.format(np.count_nonzero(np_sp_sum(self.selected_data_transformed.X, axis=0)))) if not self.filter_by_p and not self.filter_by_fdr: self.info_fil.setText('After filtering:') self.info_fil.setEnabled(False) else: self.info_fil.setEnabled(True) self.info_fil.setText('After filtering: {}'.format(count))
def set_input_info(self) -> None: cluster_words = len(self.selected_data_transformed.domain.attributes) selected_words = np.count_nonzero( np_sp_sum(self.selected_data_transformed.X, axis=0)) self.info.set_input_summary( f"{cluster_words}|{selected_words}", f"Total words: {cluster_words}\n" f"Words in subset: {selected_words}")
def check_data(self): self.Error.clear() if isinstance(self.data, Table) and \ isinstance(self.selected_data, Table): if len(self.selected_data) == 0: self.Error.empty_selection() self.clear() return self.selected_data_transformed = Table.from_table( self.data.domain, self.selected_data) if np_sp_sum(self.selected_data_transformed.X) == 0: self.Error.no_words_overlap() self.clear() elif len(self.data) == len(self.selected_data): self.Error.all_selected() self.clear() else: self.apply() else: self.clear()
def check_data(self): self.Error.clear() if isinstance(self.data, Table) and \ isinstance(self.selected_data, Table): if len(self.selected_data) == 0: self.Error.empty_selection() self.clear() return self.selected_data_transformed = Table.from_table( self.data.domain, self.selected_data) sum_X = np_sp_sum(self.selected_data_transformed.X) if sum_X == 0 or math.isnan(sum_X): self.Error.no_words_overlap() self.clear() elif len(self.data) == len(self.selected_data): self.Error.all_selected() self.clear() else: self.apply() else: self.clear()
def test_np_sp_sum(self): for data in [np.eye(10), sp.csr_matrix(np.eye(10))]: self.assertEqual(np_sp_sum(data), 10) np.testing.assert_equal(np_sp_sum(data, axis=1), np.ones(10)) np.testing.assert_equal(np_sp_sum(data, axis=0), np.ones(10))