def binary_threshold(input_image, inside_value, outside_value, output_image, lower_threshold=None, upper_threshold=None, write_output=True): """ :param input_image: :param lower_threshold: :param upper_threshold: :param inside_value: :param outside_value: :param output_image: :param write_output: :return: """ if lower_threshold is None and upper_threshold is None: raise MajaOTBCotsException("Error, no threshold given") if lower_threshold is None: expression = "im1b1<={up}?{in_v}:{out_v}".format(up=upper_threshold, in_v=inside_value, out_v=outside_value) elif upper_threshold is None: expression = "(im1b1>={low})?{in_v}:{out_v}".format(low=lower_threshold, in_v=inside_value, out_v=outside_value) else: expression = "(im1b1>={low}&&im1b1<={up})?{in_v}:{out_v}".format(low=lower_threshold, up=upper_threshold, in_v=inside_value, out_v=outside_value) out = band_math([input_image], expression, output_image=output_image, write_output=write_output) return out
def test_otb_band_math_run(self): """ Test the initialization of the object """ expected_output = os.path.join(self.working_test_directory, "output_band_math.tif") rok_otb_cots = band_math(self.input_image_list, self.expression, expected_output) self.assertIsNotNone(rok_otb_cots) self.assertTrue(os.path.exists(expected_output))
def test_otb_chain_memory(self): """ Test the initialization of the object """ l_pipeline = OtbPipelineManager() out_memory_1 = band_math([QB_1_ORTHO_EXTRACT.get("image_fullpath", None)], "im1b1", self.working_test_directory, write_output=False) l_pipeline.add_otb_app(out_memory_1) self.assertEqual(len(l_pipeline.otb_app_coarse_resolution), 1) out_memory_2 = band_math([out_memory_1.getoutput().get("out")], "im1b1", self.working_test_directory, write_output=False) l_pipeline.add_otb_app(out_memory_2) self.assertEqual(len(l_pipeline.otb_app_coarse_resolution), 2) out_memory_3 = band_math([out_memory_2.getoutput().get("out")], "im1b1", self.working_test_directory, write_output=True) l_pipeline.free_otb_app() self.assertEqual(len(l_pipeline.otb_app_coarse_resolution), 0)
def generate_l1_toa_image(self, l2comm, factor, solzenith, L1ResolList, working_dir): for l1res in range(len(L1ResolList)): curL1Res = L1ResolList[l1res] l_ListOfL1BandCode = self._plugin.BandsDefinitions.get_list_of_l1_band_code( curL1Res) for band in l_ListOfL1BandCode: curMULT = self._header_handler.get_ref_mutl_factor_from_band_code( band) curADD = self._header_handler.get_ref_add_factor_from_band_code( band) expression_bandmath = "(im2b1 || (im1b1-0.00001)<0)?" + str( self._reall1nodata) + ":" if xml_tools.as_bool(l2comm.get_value("CalAdjustOption")): expression_bandmath = expression_bandmath + str( factor) + "*" expression_bandmath = expression_bandmath + "(im1b1*" + str( curMULT) + "+" + str(curADD) + ")/cos(" + str( solzenith) + "*" + str(math.pi / 180) + ")" img_toaconverter = os.path.join( working_dir, "TOAConverter_{}.tif".format(band)) app_bandmath = band_math([ self._header_handler.get_toa_image_filename_from_band_code( band), self._qbmask ], expression_bandmath, img_toaconverter, write_output=False) self._toascalarlist.append(app_bandmath.getoutput().get("out")) self._toa_pipeline.add_otb_app(app_bandmath) img_concatenate_toa = os.path.join(working_dir, "l1toa_{}.tif".format(l1res)) param_concatenate_toa = { "il": self._toascalarlist, "out": img_concatenate_toa } app_concatenate_toa = OtbAppHandler("ConcatenateDoubleImages", param_concatenate_toa, write_output=True) self._l1toaimagelist.append(app_concatenate_toa.getoutput()["out"]) self._qb_pipeline.free_otb_app() self._toa_pipeline.free_otb_app()
def generate_sol1_image(self, sol_h1, working_dir): LOGGER.debug("VenusMuscateL1ImageFileReader::GenerateSOL1Image()") # SOL1 image pipeline connection # ********************************************************************************************************* LOGGER.debug("MuscateL1ImageFileReader::GenerateSOL1Image()") l_SOL1_DX_ImageFileName = self._header_handler.get_sol_image_filename( sol_h1, "DX") LOGGER.debug("l_SOL1_DX_ImageFileName :" + l_SOL1_DX_ImageFileName) l_SOL1_DY_ImageFileName = self._header_handler.get_sol_image_filename( sol_h1, "DY") LOGGER.debug("l_SOL1_DY_ImageFileName :" + l_SOL1_DY_ImageFileName) # SOL1 image pipeline connection # ********************************************************************************************************* # Read the vector images containing the SOL DX and DY # Extract the corresponding channels since it is vector images m_SOL1ExtractDXChannel = self._header_handler.get_sol_image_index( sol_h1, "DX")[0] # -------------------------------------- # Transform the image coordinates in ground coordinates by multiplying by the L1 product spacing (spec : ImageToGround) # All viewing and solar angles are transformed in ground coordinates sol1_mult_DX_filename = os.path.join(working_dir, "sol1_mult_DX.tif") sol1_mult_DX_app = band_math([l_SOL1_DX_ImageFileName], "im1b" + str(m_SOL1ExtractDXChannel) + "*" + str(self._dem.L2Areas[0].spacing[0]), sol1_mult_DX_filename + ":double", write_output=False) # DY Stuff m_SOL1ExtractDYChannel = self._header_handler.get_sol_image_index( sol_h1, "DY")[0] # -------------------------------------- # Transform the image coordinates in ground coordinates by multiplying by the L1 product spacing (spec : ImageToGround) # All viewing and solar angles are transformed in ground coordinates # x(-1) if the spacing Y is negative sol1_mult_DY_filename = os.path.join(working_dir, "sol1_mult_DY.tif") sol1_mult_DY_app = band_math([l_SOL1_DY_ImageFileName], "im1b" + str(m_SOL1ExtractDYChannel) + "* -1.0 *" + str(self._dem.L2Areas[0].spacing[1]), sol1_mult_DY_filename + ":double", write_output=False) # Concatenate DX and DY out_concatenate = os.path.join(working_dir, "sol1_concat.tif") param_concatenate = { "il": [ sol1_mult_DX_app.getoutput().get("out"), sol1_mult_DY_app.getoutput().get("out") ], "out": out_concatenate } concat_app = OtbAppHandler("ConcatenateDoubleImages", param_concatenate, write_output=False) # Resample the SOL images out_resample = os.path.join(working_dir, "sol1_concat_resamp.tif") resamp_app = resample(concat_app.getoutput().get("out"), self._dem.ALC, out_resample, OtbResampleType.LINEAR, padradius=4, write_output=True) # , 0 /* edgePaddingValue */) # V 4.2 - ITK4 m_SOL1Expand->SetEdgePaddingValue(0) # Par defaut le filtre initialise le pixel a zero self._sol1image = resamp_app.getoutput().get("out")
def write_public_images(self, p_PublicDirectory, p_L2BaseFilename, p_ReflectanceQuantificationValue, p_AOTQuantificationValue, p_AOTNodataValue, p_VAPQuantificationValue, p_VAPNodataValue, p_CLDDataBandsSelected, p_CLDCoreAlgorithmsMapBand, p_WritePublicProduct, p_EnvCorOption, working_dir): # IF PUBLIC PART OF L2 PRODUCT IS WRITTEN if p_WritePublicProduct: l_BandsDefinitions = self._plugin.BandsDefinitions l_ListOfL2Res = l_BandsDefinitions.ListOfL2Resolution l_NumberOfResolutions = len(l_ListOfL2Res) LOGGER.debug( "L2ImageFileWriterBase::Initialize Number of resolutions: " + str(l_NumberOfResolutions) + ".") # Not use the list of XS band because for Landsat8, the band B9 is not # selected in the L2 resolution (only in L2Coarse resolution) l_BaseL2FullFilename = os.path.join(p_PublicDirectory, p_L2BaseFilename) l_MASKSDirectory = os.path.join(p_PublicDirectory, "MASKS") l_BaseL2FullMASKSFilename = os.path.join(l_MASKSDirectory, p_L2BaseFilename) file_utils.create_directory(l_MASKSDirectory) resol_QLK = 0 l_RedBandId, l_BlueBandId, l_GreenBandId = l_BandsDefinitions.get_l2_information_for_quicklook_band_code( self._quicklookredbandcode, self._quicklookgreenbandcode, self._quicklookbluebandcode) # ************************************************************************************************************* # **** LOOP on RESOLUTION ********************************************* # ************************************************************************************************************* for resol in range(0, l_NumberOfResolutions): l_StrResolution = l_BandsDefinitions.ListOfL2Resolution[resol] # -------------------------------------------------------- # L2 area AreaType l_AreaToL2Resolution l_AreaFile = self._sre_list[resol] l_ListOfBand = l_BandsDefinitions.get_list_of_l2_band_code( l_StrResolution) l_NumberOfBands = len(l_ListOfBand) LOGGER.debug( "L2ImageFileReader::Gen Public image file for the resolution " + l_StrResolution + ".") l_grpSuffix = "" if l_NumberOfResolutions == 1: l_grpSuffix = "XS" else: l_grpSuffix = l_ListOfL2Res[resol] l_StrResolution = l_BandsDefinitions.ListOfL2Resolution[resol] # Read the Coef apply for SRE and FRE images LOGGER.info( "SRE and FRE values multiply by the reflectance quantification value " + str(p_ReflectanceQuantificationValue) + ".") # ************************************************************************************************************* # **** PUBLIC DATA ************************************************ # ************************************************************************************************************* # START WRITING SRE Image file DATA # Initialize the Scalar filter sre_pipeline = OtbPipelineManager() #Extract each channel for each file tmp_l2_filename_list = [] tmp_l2_image_list = [] tmp_sre_scaled = os.path.join( working_dir, "tmp_sre_multi_round_" + l_StrResolution + ".tif") param_scaled_sre = { "im": self._sre_list[resol], "coef": p_ReflectanceQuantificationValue, "out": tmp_sre_scaled } scaled_sre_app = OtbAppHandler("RoundImage", param_scaled_sre, write_output=False) sre_pipeline.add_otb_app(scaled_sre_app) for i in range(l_NumberOfBands): if resol == resol_QLK and (l_RedBandId == i or l_GreenBandId == i or l_BlueBandId == i): tmp_sre_roi = os.path.join( working_dir, "tmp_sre_roi_" + l_ListOfBand[i] + ".tif") tmp_sre_roi_app = extract_roi(self._sre_list[resol], [i], tmp_sre_roi, write_output=False) tmp_l2_image_list.append( tmp_sre_roi_app.getoutput().get("out")) tmp_l2_filename_list.append(tmp_sre_roi) if l_RedBandId == i: self._qckl_red_image = tmp_sre_roi elif l_GreenBandId == i: self._qckl_green_image = tmp_sre_roi elif l_BlueBandId == i: self._qckl_blue_image = tmp_sre_roi sre_pipeline.add_otb_app(tmp_sre_roi_app) tmp_sre_scaled_roi = os.path.join( working_dir, "tmp_sre_scaled_roi_" + l_ListOfBand[i] + ".tif") tmp_sre_scaled_roi_app = extract_roi( scaled_sre_app.getoutput().get("out"), [i], tmp_sre_scaled_roi + ":int16", write_output=False) tmp_l2_image_list.append( tmp_sre_scaled_roi_app.getoutput().get("out")) sre_pipeline.add_otb_app(tmp_sre_scaled_roi_app) tmp_l2_filename_list.append( l_BaseL2FullFilename + "_SRE_" + l_ListOfBand[i] + ".tif" + file_utils. get_extended_filename_write_image_file_standard()) # START WRITING FRE Image file DATA tmp_tgs_filename = os.path.join( working_dir, "tmp_tgs_" + l_StrResolution + ".tif") tmp_stl_filename = os.path.join( working_dir, "tmp_stl_" + l_StrResolution + ".tif") fre_pipeline = OtbPipelineManager() if p_EnvCorOption: # Initialize the Scalar filter tmp_fre_scaled = os.path.join( working_dir, "tmp_fre_multi_round_" + l_StrResolution + ".tif") param_scaled_fre = { "im": self._fre_list[resol], "coef": p_ReflectanceQuantificationValue, "out": tmp_fre_scaled } scaled_fre_app = OtbAppHandler("RoundImage", param_scaled_fre, write_output=False) fre_pipeline.add_otb_app(scaled_fre_app) # Extract each channel for each file for i in range(l_NumberOfBands): tmp_fre_roi = os.path.join( working_dir, "tmp_fre_roi_" + l_ListOfBand[i] + ".tif") tmp_fre_roi_app = extract_roi( scaled_fre_app.getoutput().get("out"), [i], tmp_fre_roi + ":int16", write_output=False) tmp_l2_image_list.append( tmp_fre_roi_app.getoutput().get("out")) fre_pipeline.add_otb_app(tmp_fre_roi_app) tmp_l2_filename_list.append( l_BaseL2FullFilename + "_FRE_" + l_ListOfBand[i] + ".tif" + file_utils. get_extended_filename_write_image_file_standard()) #Add tgs and stl also provided by the envcorr tmp_l2_image_list.append(self._tgs_list[resol]) tmp_l2_filename_list.append(tmp_tgs_filename) tmp_l2_image_list.append(self._stl_list[resol]) tmp_l2_filename_list.append(tmp_stl_filename) # START WRITING ATB Image file DATA # Initialize the Scalar filter # FA1424: Temporary Fix to address cosmetic aspects of FA1424 # VAPThreshold.SetInput(self.GetVAPImageList()[resol)) # VAPThreshold.SetOutsideValue(255. / p_VAPQuantificationValue) # VAPThreshold.ThresholdAbove(255. / p_VAPQuantificationValue) # VAPScalar.SetInput(VAPThreshold.GetOutput()) # VAPScalar.SetCoef(p_VAPQuantificationValue) atb_pipeline = OtbPipelineManager() tmp_vap = os.path.join( working_dir, "tmp_vap_scaled_" + l_StrResolution + ".tif") param_bandmath_vap = { "il": [self._l2vapimagelist[resol], self._l2edgimagelist[resol]], "exp": "(im2b1 == 1)?" + str(p_VAPNodataValue) + ":" + "im1b1*" + str(p_VAPQuantificationValue), "out": tmp_vap } vap_scal_app = OtbAppHandler("BandMathDouble", param_bandmath_vap, write_output=False) atb_pipeline.add_otb_app(vap_scal_app) tmp_round_vap = os.path.join( working_dir, "tmp_vap_round_" + l_StrResolution + ".tif") param_round_vap = { "im": vap_scal_app.getoutput().get("out"), "out": tmp_round_vap } vap_round_app = OtbAppHandler("RoundImage", param_round_vap, write_output=False) atb_pipeline.add_otb_app(vap_round_app) tmp_aot = os.path.join( working_dir, "tmp_aot_scaled_" + l_StrResolution + ".tif") param_bandmath_aot = { "il": [self._l2aotlist[resol], self._l2edgimagelist[resol]], "exp": "(im2b1 == 1)?" + str(p_AOTNodataValue) + ":" + "im1b1*" + str(p_AOTQuantificationValue), "out": tmp_aot } aot_scal_app = OtbAppHandler("BandMathDouble", param_bandmath_aot, write_output=False) atb_pipeline.add_otb_app(aot_scal_app) tmp_round_aot = os.path.join( working_dir, "tmp_aot_round_" + l_StrResolution + ".tif") param_round_aot = { "im": aot_scal_app.getoutput().get("out"), "out": tmp_round_aot } aot_round_app = OtbAppHandler("RoundImage", param_round_aot, write_output=False) atb_pipeline.add_otb_app(aot_round_app) atb_filename = l_BaseL2FullFilename + "_ATB_" + l_grpSuffix + ".tif" param_atb_concat = { "il": [ vap_round_app.getoutput().get("out"), aot_round_app.getoutput().get("out") ], "out": atb_filename + ":uint8" + file_utils. get_extended_filename_write_image_file_standard() } atb_binconcat_app = OtbAppHandler("ConcatenateImages", param_atb_concat, write_output=False) #tmp_l2_image_list.append(atb_binconcat_app.getoutput().get("out")) #tmp_l2_filename_list.append(atb_filename) atb_pipeline.add_otb_app(atb_binconcat_app) # START WRITING IAB MASK iab_pipeline = OtbPipelineManager() # Create the image list tmp_iab = os.path.join( working_dir, "tmp_iab_concat_" + l_StrResolution + ".tif") param_iab_concat = { "il": [self._l2iwcmasklist[resol], self._l2taomasklist[resol]], "out": tmp_iab + ":uint8" } tmp_iab_concat_app = OtbAppHandler("ConcatenateImages", param_iab_concat, write_output=False) iab_pipeline.add_otb_app(tmp_iab_concat_app) iab_filename = l_BaseL2FullMASKSFilename + "_IAB_" + l_grpSuffix + ".tif" param_iab_binconcat = { "im": tmp_iab_concat_app.getoutput().get("out"), "out": iab_filename + ":uint8" + file_utils. get_extended_filename_write_image_file_standard() } iab_binconcat_app = OtbAppHandler("BinaryConcatenate", param_iab_binconcat, write_output=False) iab_pipeline.add_otb_app(iab_binconcat_app) write_images([ atb_binconcat_app.getoutput().get("out"), iab_binconcat_app.getoutput().get("out") ], [atb_filename, iab_filename]) #tmp_l2_image_list.append(iab_binconcat_app.getoutput().get("out")) #tmp_l2_filename_list.append(iab_filename) # START WRITING EDG Image file DATA tmp_l2_image_list.append(self._l2edgimagelist[resol]) tmp_l2_filename_list.append(l_BaseL2FullMASKSFilename + "_EDG_" + l_grpSuffix + ".tif") #-------------------------- # Write all the images at L2 Reso write_images(tmp_l2_image_list, tmp_l2_filename_list) atb_pipeline.free_otb_app() iab_pipeline.free_otb_app() fre_pipeline.free_otb_app() sre_pipeline.free_otb_app() # -------------------------- #Caching of cloud images needed for MG2 l_cm2_index = p_CLDCoreAlgorithmsMapBand[CLOUD_MASK_ALL_CLOUDS] l_shadows_index = p_CLDCoreAlgorithmsMapBand[ CLOUD_MASK_SHADOWS] l_shadvar_index = p_CLDCoreAlgorithmsMapBand[ CLOUD_MASK_SHADVAR] # START WRITING MG2 Image file DATA l_mg2_image_list = [] mg2_pipeline = OtbPipelineManager() # Connect the WAM image wat_resampled = os.path.join( working_dir, "wat_resampled_" + l_StrResolution + ".tif") app_resample_wat = resample(self._wasimage, self._dtm.ALTList[resol], wat_resampled, method=OtbResampleType.LINEAR, threshold=0.25, write_output=False) l_mg2_image_list.append( app_resample_wat.getoutput().get("out")) mg2_pipeline.add_otb_app(app_resample_wat) # Extract the CM2 cloud mask l_mg2_image_list.append(self._l2cldlist[resol][l_cm2_index]) #Connect the SNW image if any if self._cld_snow is not None: LOGGER.debug( "Snow mask has been successfully computed, adding it to the MG2" ) snw_resampled = os.path.join( working_dir, "snw_resampled_" + l_StrResolution + ".tif") app_resample_snw = resample(self._cld_snow, self._dtm.ALTList[resol], snw_resampled, method=OtbResampleType.LINEAR, threshold=0.25, write_output=False) l_mg2_image_list.append( app_resample_snw.getoutput().get("out")) mg2_pipeline.add_otb_app(app_resample_snw) else: # Add a constant mask tmp_constant_filename = os.path.join( working_dir, "Const_shd_masks.tif") cst_snw_app = constant_image(self._dtm.ALTList[resol], 0, tmp_constant_filename + ":uint8", write_output=False) l_mg2_image_list.append(cst_snw_app.getoutput().get("out")) mg2_pipeline.add_otb_app(cst_snw_app) # Connect the shadow or mask tmp_shador_bandmath = os.path.join( working_dir, "tmp_shador_bandmath_" + l_StrResolution + ".tif") tmp_band_math_app = band_math([ self._l2cldlist[resol][l_shadows_index], self._l2cldlist[resol][l_shadvar_index] ], "im1b1 || im2b1", tmp_shador_bandmath + ":uint8", write_output=False) l_mg2_image_list.append( tmp_band_math_app.getoutput().get("out")) mg2_pipeline.add_otb_app(tmp_band_math_app) # Connect the HID image hid_resampled = os.path.join( working_dir, "hid_resampled_" + l_StrResolution + ".tif") app_resample_hid = resample(self._dtm_hid, self._dtm.ALTList[resol], hid_resampled, method=OtbResampleType.LINEAR, threshold=0.25, write_output=False) l_mg2_image_list.append( app_resample_hid.getoutput().get("out")) mg2_pipeline.add_otb_app(app_resample_hid) # Connect the SHDimage shd_resampled = os.path.join( working_dir, "shd_resampled_" + l_StrResolution + ".tif") app_resample_shd = resample(self._dtm_shd, self._dtm.ALTList[resol], shd_resampled, method=OtbResampleType.LINEAR, threshold=0.25, write_output=False) mg2_pipeline.add_otb_app(app_resample_shd) l_mg2_image_list.append( app_resample_shd.getoutput().get("out")) if p_EnvCorOption: # Append STL l_mg2_image_list.append(tmp_stl_filename) # Append TGS l_mg2_image_list.append(tmp_tgs_filename) else: # Append STL l_mg2_image_list.append(self._stl_list[resol]) # Append TGS l_mg2_image_list.append(self._tgs_list[resol]) # Concatenate all tmp_mg2 = os.path.join( working_dir, "tmp_mg2_concat_" + l_StrResolution + ".tif") param_mg2_concat = {"il": l_mg2_image_list, "out": tmp_mg2} tmp_mg2_concat_app = OtbAppHandler("ConcatenateImages", param_mg2_concat, write_output=False) param_mg2_binconcat = { "im": tmp_mg2_concat_app.getoutput().get("out"), "out": l_BaseL2FullMASKSFilename + "_MG2_" + l_grpSuffix + ".tif" + ":uint8" + file_utils. get_extended_filename_write_image_file_standard() } mg2_binconcat_app = OtbAppHandler("BinaryConcatenate", param_mg2_binconcat, write_output=True) mg2_pipeline.add_otb_app(mg2_binconcat_app) mg2_pipeline.free_otb_app() # START WRITING SAT Image file DATA # TODO Create the writer with test on number of bands param_sat_binconcat = { "im": self._l2satimagelist[resol], "out": l_BaseL2FullMASKSFilename + "_SAT_" + l_grpSuffix + ".tif" + ":uint8" + file_utils. get_extended_filename_write_image_file_standard() } sat_binconcat_app = OtbAppHandler("BinaryConcatenate", param_sat_binconcat, write_output=True) # START WRITING PIX Image file DATA if "PIXImages" in self._l1_image_info.MuscateData: LOGGER.debug( "The L1 product have 'Aberrant_Pixels' masks. There are writed in the L2 out product..." ) otb_file_utils.otb_copy_image_to_file( self._l2piximagelist[resol], l_BaseL2FullMASKSFilename + "_PIX_" + l_grpSuffix + ".tif") else: LOGGER.debug("No PIX node detected to write") # START WRITING USI Image file DATA if "Node_Useful_Image" in self._l1_image_info.MuscateData: LOGGER.debug( "The L1 product have 'Useful_Image' files. There are copied in the L2 out product..." ) # Write the USI in the Xml file, in the Useful_Imagenode ! l_XPathRootUSI_In = "//Mask[Mask_Properties/NATURE='Useful_Image']/Mask_File_List/MASK_FILE[@group_id='{}']" xnodes_in = xml_tools.get_all_values( self._l1_image_info.MuscateData["Node_Useful_Image"], l_XPathRootUSI_In.format(l_grpSuffix)) # Get the path in the xml product filename lPath = os.path.dirname(self._l1_image_info.HeaderFilename) for node_in in xnodes_in: l_FullPathFilename = os.path.join(lPath, node_in.text) # Expand threshold the file usi_resampled = l_BaseL2FullMASKSFilename + "_USI_" + l_grpSuffix + ".tif"\ + file_utils.get_extended_filename_write_mask_file_muscate() resample(l_FullPathFilename, self._dtm.ALTList[resol], usi_resampled, threshold=0.25, method=OtbResampleType.LINEAR, write_output=True) else: LOGGER.debug( "No 'Useful_Image' mask detected in the L1 product." ) # Fin si manage USI # START WRITING DFP Image file DATA (=DFP in MUSCATE) #TODO if self._l2dfpimagelist is not None: param_dfp_binconcat = { "im": self._l2dfpimagelist[resol], "out": l_BaseL2FullMASKSFilename + "_DFP_" + l_grpSuffix + ".tif" } dfp_binconcat_app = OtbAppHandler("BinaryConcatenate", param_dfp_binconcat, write_output=True) else: LOGGER.debug("DFP Masks not available.") # START WRITING CLM (CLD) Image file DATA # Connect the CLD image # Connect the CLD image # ------------------------------------- l_cld_uses_filenames = False for f in self._l2cldlist[resol]: if not otb_is_swig_pointer(f) and os.path.exists(f): l_cld_uses_filenames = True self.write_cld_image(self._l2cldlist[resol], p_CLDDataBandsSelected, l_BaseL2FullMASKSFilename + "_CLM_" + l_grpSuffix + ".tif", use_filenames=l_cld_uses_filenames) LOGGER.debug("Writing L2 resolution image done !")