コード例 #1
0
 def __init__(self, elements, transpose=False, isVector=False):
     if isVector:
         els = [OrderedSet(x) for x in elements]
     else:
         els = [[OrderedSet(x) for x in row] for row in elements]
     self.mat = np.array(els, dtype=object)
     if transpose:
         self.mat = self.mat.T
コード例 #2
0
 def testMul(self):
     lhs = OrderedSet(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
     rhs = OrderedSet(['1', '2', '3', '4', '5', '6', '7', '8'])
     prod = mul(lhs, rhs)
     result = OrderedSet(['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8',
                          'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8',
                          'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8',
                          'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8',
                          'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8',
                          'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8',
                          'g1', 'g2', 'g3', 'g4', 'g5', 'g6', 'g7', 'g8',
                          'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'h8'])
     self.assertEqual(prod, result)
コード例 #3
0
 def setChannel(self,cpt):
     codomainElements = OrderedSet([names[-1] for (names,_) in cpt])
     NumCodElems = len(codomainElements)
     codomain = efp.Dom([self.name+"_"+elem for elem in codomainElements],names = efp.Name(self.name))
     doms = []
     steps = 1
     for (i,pn) in enumerate(self.parents):
         domainElements = OrderedSet([names[i] for (names,_) in cpt])
         doms.append(efp.Dom([pn.name+"_"+elem for elem in domainElements],names = efp.Name(pn.name)))
         steps *= len(domainElements)
     dom = functools.reduce(lambda d1, d2: d1 + d2, doms)
     pvalues = [row for (_,row) in cpt]
     matrix = [pvalues[n:n+NumCodElems] for n in range(0,len(pvalues),NumCodElems)]
     states = [efp.State(matrix[j], codomain) for j in range(steps)]
     self.channel = efp.chan_from_states(states, dom)
     self.node_size = len(self.channel.cod[0])
コード例 #4
0
 def add(self, rhs):
     assert self.mat.shape == rhs.mat.shape
     els = [[OrderedSet([]) for _ in range(self.mat.shape[1])]
            for _ in range(self.mat.shape[0])]
     result = np.array(els, dtype=object)
     for i in range(self.mat.shape[0]):
         for j in range(self.mat.shape[1]):
             result[i, j] = add(self.mat[i, j], rhs.mat[i, j])
     m = Matrix([])
     m.mat = result
     return m
コード例 #5
0
 def dot(self, rhs):
     assert self.mat.shape[1] == rhs.mat.shape[0]
     els = [[OrderedSet([]) for _ in range(rhs.mat.shape[1])]
            for _ in range(self.mat.shape[0])]
     result = np.array(els, dtype=object)
     for i in range(self.mat.shape[0]):
         for j in range(rhs.mat.shape[1]):
             for k in range(self.mat.shape[1]):
                 m = mul(self.mat[i, k], rhs.mat[k, j])
                 result[i, j] = add(result[i, j], m)
     m = Matrix([])
     m.mat = result
     return m
コード例 #6
0
def mul(lhs, rhs):
    """lhs and rhs are sets
    multiplication is concatenation
    see: https://en.wikipedia.org/wiki/Concatenation#Concatenation_of_sets_of_strings
    """
    return OrderedSet([a + b for a in lhs for b in rhs])
コード例 #7
0
    def toGNF(self):
        """Convert grammar to Greibach normal form
        """
        # 1) convert to matrix form: X * H + K,
        # where X is a row vector of nonterminals,
        # H is a matrix of productions which start with nonterminal
        # K is a row vector of productions which start with terminal
        # for example look at [1] starting on page 20
        # [1] https://www.cis.upenn.edu/~jean/old511/html/cis51108sl4b.pdf

        X, H, K = self._toMatrix()

        # 2) write system of equations
        # { X = K * Y + K
        # { Y = H * Y + H
        # where Y is a matrix of new nonterminals with size same as H
        Y = [[[(('Y{}{}'.format(j, i), False), )]
              for i in range(H.mat.shape[0])] for j in range(H.mat.shape[1])]
        Y = Matrix(Y)

        # 3) calculate X from step 2
        # substitute nonterminals in matrix H with calculated X values
        # and get matrix L
        # the new system is:
        # { X = K * Y + K
        # { Y = L * Y + L
        # calculate X, calculate Y
        # convert these matrices to one grammar

        xCalc = K.dot(Y).add(K)
        subs = {}
        for i, nt in enumerate(self.nonterminals):
            subs[nt] = xCalc.mat[0][i]

        L = H
        for i, row in enumerate(H.mat):
            for j, val in enumerate(row):
                newCell = []
                for tup in val:
                    if tup[0][0] in subs:
                        for sub in subs[tup[0][0]]:
                            newCell.append(sub + tup[1:])
                    else:
                        newCell.append(tup)
                L.mat[i, j] = OrderedSet(newCell)

        yCalc = L.dot(Y).add(L)

        terminals = self.terminals
        nonterminals = self.nonterminals + \
            ['Y{}{}'.format(j, i)
             for i in range(H.mat.shape[0]) for j in range(H.mat.shape[1])]
        productions = {}
        start = self.start
        for i, oldNT in enumerate(self.nonterminals):
            productions[oldNT] = xCalc.mat[0][i]
        for i, row in enumerate(yCalc.mat):
            for j, val in enumerate(row):
                lhs = 'Y{}{}'.format(j, i)
                productions[lhs] = val

        return Grammar(nonterminals, terminals, productions, start)