def get_matches(diagram1, diagram2, threshold_score=3.0, consider_context=True): # initVM for lucene lucene.initVM() # index creation p1 = get_preprocessed_nodes(diagram1, consider_context) p2 = get_preprocessed_nodes(diagram2, consider_context) docs_from_p1 = transform_to_index(p1) docs_from_p2 = transform_to_index(p2) # set up in memory store for indexes directory1 = store.RAMDirectory() directory2 = store.RAMDirectory() analyzer = analysis.standard.StandardAnalyzer() # create separate indexes for each diagram create_index(directory=directory1, analyzer=analyzer, documents_to_index=docs_from_p1) create_index(directory=directory2, analyzer=analyzer, documents_to_index=docs_from_p2) # SEARCH STEP: use indexes from one store to search on indexes from other store res_1 = search_index(directory_to_search=directory2, entities_to_check=p1, analyzer=analyzer) res_2 = search_index(directory_to_search=directory1, entities_to_check=p2, analyzer=analyzer) # apply match search pruning rules set_m = prune_results(res_1, res_2, threshold_score) directory1.close() directory2.close() return set_m
def load(cls, directory, analyzer=None): """Open `IndexSearcher`_ with a lucene RAMDirectory, loading index into memory.""" with closing.store(directory) as directory: directory = store.RAMDirectory(directory, store.IOContext.DEFAULT) self = cls(directory, analyzer) self.shared.add(self.directory) return self
def directory(self, directory): if directory is None: directory = store.RAMDirectory() self.add(directory) elif isinstance(directory, string_types): directory = store.FSDirectory.open(File(directory).toPath()) self.add(directory) return directory
def test_grouping(tempdir, indexer, zipcodes): field = indexer.fields['location'] = engine.NestedField( 'state.county.city', docValuesType='sorted') for doc in zipcodes: if doc['state'] in ('CA', 'AK', 'WY', 'PR'): lat, lng = ('{0:08.3f}'.format(doc.pop(l)) for l in ['latitude', 'longitude']) location = '.'.join(doc[name] for name in ['state', 'county', 'city']) indexer.add(doc, latitude=lat, longitude=lng, location=location) indexer.commit() states = list(indexer.terms('state')) assert states[0] == 'AK' and states[-1] == 'WY' counties = [ term.split('.')[-1] for term in indexer.terms('state.county', 'CA') ] hits = indexer.search(field.prefix('CA')) assert sorted({hit['county'] for hit in hits}) == counties assert counties[0] == 'Alameda' and counties[-1] == 'Yuba' cities = [ term.split('.')[-1] for term in indexer.terms('state.county.city', 'CA.Los Angeles') ] hits = indexer.search(field.prefix('CA.Los Angeles')) assert sorted({hit['city'] for hit in hits}) == cities assert cities[0] == 'Acton' and cities[-1] == 'Woodland Hills' (hit, ) = indexer.search('zipcode:90210') assert hit['state'] == 'CA' and hit['county'] == 'Los Angeles' and hit[ 'city'] == 'Beverly Hills' and hit['longitude'] == '-118.406' query = Q.prefix('zipcode', '90') ((field, facets), ) = indexer.facets(query, 'state.county').items() assert field == 'state.county' la, orange = sorted(filter(facets.get, facets)) assert la == 'CA.Los Angeles' and facets[la] > 100 assert orange == 'CA.Orange' and facets[orange] > 10 queries = { term: Q.term(field, term) for term in indexer.terms(field, 'CA.') } ((field, facets), ) = indexer.facets(query, **{field: queries}).items() assert all(value.startswith('CA.') for value in facets) and set(facets) == set(queries) assert facets['CA.Los Angeles'] == 264 groups = indexer.groupby(field, Q.term('state', 'CA'), count=1) assert len(groups) == 1 < groups.count (hits, ) = groups assert hits.value == 'CA.Los Angeles' and len( hits) == 1 and hits.count > 100 grouping = engine.documents.GroupingSearch(field, sort=search.Sort( indexer.sortfield(field)), cache=False, allGroups=True) assert all( grouping.search(indexer.indexSearcher, Q.alldocs()).facets.values()) assert len(grouping) == len(list(grouping)) > 100 assert set(grouping) > set(facets) hits = indexer.search(query, timeout=-1) assert not hits and not hits.count and math.isnan(hits.maxscore) hits = indexer.search(query, timeout=10) assert len(hits) == hits.count == indexer.count( query) and hits.maxscore == 1.0 directory = store.RAMDirectory() query = Q.term('state', 'CA') size = indexer.copy(directory, query) searcher = engine.IndexSearcher(directory) assert len(searcher) == size and list(searcher.terms('state')) == ['CA'] path = os.path.join(tempdir, 'temp') size = indexer.copy(path, exclude=query, merge=1) assert len(searcher) + size == len(indexer) searcher = engine.IndexSearcher(path) assert len(searcher.segments) == 1 and 'CA' not in searcher.terms('state') directory.close()