コード例 #1
0
def test_brain_observatory_experiment_containers_notebook(boc):
    targeted_structures = boc.get_all_targeted_structures()
    visp_ecs = boc.get_experiment_containers(targeted_structures=['VISp'])
    depths = boc.get_all_imaging_depths()
    stims = boc.get_all_stimuli()
    cre_lines = boc.get_all_cre_lines()
    cux2_ecs = boc.get_experiment_containers(cre_lines=['Cux2-CreERT2'])
    cux2_ec_id = cux2_ecs[-1]['id']
    exps = boc.get_ophys_experiments(experiment_container_ids=[cux2_ec_id])
    exp = boc.get_ophys_experiments(experiment_container_ids=[cux2_ec_id],
                                    stimuli=[stim_info.STATIC_GRATINGS])[0]
    exp = boc.get_ophys_experiment_data(exp['id'])

    assert set(depths) == set([
        175, 185, 195, 200, 205, 225, 250, 265, 275, 276, 285, 300, 320, 325,
        335, 350, 365, 375, 390, 400, 550, 570, 625
    ])

    expected_stimuli = [
        'drifting_gratings', 'locally_sparse_noise',
        'locally_sparse_noise_4deg', 'locally_sparse_noise_8deg',
        'natural_movie_one', 'natural_movie_three', 'natural_movie_two',
        'natural_scenes', 'spontaneous', 'static_gratings'
    ]

    assert set(stims) == set(expected_stimuli)

    expected_cre_lines = [
        u'Cux2-CreERT2', u'Emx1-IRES-Cre', u'Fezf2-CreER', u'Nr5a1-Cre',
        u'Ntsr1-Cre_GN220', u'Pvalb-IRES-Cre', u'Rbp4-Cre_KL100',
        u'Rorb-IRES2-Cre', u'Scnn1a-Tg3-Cre', u'Slc17a7-IRES2-Cre',
        u'Sst-IRES-Cre', u'Tlx3-Cre_PL56', u'Vip-IRES-Cre'
    ]

    assert set(cre_lines) == set(expected_cre_lines)

    cells = boc.get_cell_specimens()

    cells = pd.DataFrame.from_records(cells)

    # find direction selective cells in VISp
    visp_ec_ids = [ec['id'] for ec in visp_ecs]
    visp_cells = cells[cells['experiment_container_id'].isin(visp_ec_ids)]

    # significant response to drifting gratings stimulus
    sig_cells = visp_cells[visp_cells['p_dg'] < 0.05]

    # direction selective cells
    dsi_cells = sig_cells[(sig_cells['dsi_dg'] > 0.5)
                          & (sig_cells['dsi_dg'] < 1.5)]
    #assert len(cells) == 27124
    assert len(cells) > 0
    #assert len(visp_cells) == 16031
    assert len(visp_cells) > 0
    #assert len(sig_cells) == 8669
    assert len(sig_cells) > 0
    #assert len(dsi_cells) == 4943
    assert len(dsi_cells) > 0

    # find experiment containers for those cells
    dsi_ec_ids = dsi_cells['experiment_container_id'].unique()

    # Download the ophys experiments containing the drifting gratings stimulus for VISp experiment containers
    dsi_exps = boc.get_ophys_experiments(experiment_container_ids=dsi_ec_ids,
                                         stimuli=[stim_info.DRIFTING_GRATINGS])

    # pick a direction-selective cell and find its NWB file
    dsi_cell = dsi_cells.iloc[0]

    # figure out which ophys experiment has the drifting gratings stimulus for the cell's experiment container
    cell_exp = boc.get_ophys_experiments(
        experiment_container_ids=[dsi_cell['experiment_container_id']],
        stimuli=[stim_info.DRIFTING_GRATINGS])[0]

    data_set = boc.get_ophys_experiment_data(cell_exp['id'])

    # Fluorescence
    dsi_cell_id = dsi_cell['cell_specimen_id']
    time, raw_traces = data_set.get_fluorescence_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, demixed_traces = data_set.get_demixed_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, neuropil_traces = data_set.get_neuropil_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, corrected_traces = data_set.get_corrected_fluorescence_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, dff_traces = data_set.get_dff_traces(cell_specimen_ids=[dsi_cell_id])

    # ROI Masks
    data_set = boc.get_ophys_experiment_data(510221121)

    # get the specimen IDs for a few cells
    cids = data_set.get_cell_specimen_ids()[:15:5]

    # get masks for specific cells
    roi_mask_list = data_set.get_roi_mask(cell_specimen_ids=cids)

    # make a mask of all ROIs in the experiment
    all_roi_masks = data_set.get_roi_mask_array()
    combined_mask = all_roi_masks.max(axis=0)

    max_projection = data_set.get_max_projection()

    # ROI Analysis
    # example loading drifing grating data
    data_set = boc.get_ophys_experiment_data(512326618)
    dg = DriftingGratings(data_set)

    # filter for visually responding, selective cells
    vis_cells = (dg.peak.ptest_dg < 0.05) & (dg.peak.peak_dff_dg > 3)
    osi_cells = vis_cells & (dg.peak.osi_dg > 0.5) & (dg.peak.osi_dg <= 1.5)
    dsi_cells = vis_cells & (dg.peak.dsi_dg > 0.5) & (dg.peak.dsi_dg <= 1.5)

    # 2-d tf vs. ori histogram
    # tfval = 0 is used for the blank sweep, so we are ignoring it here
    os = np.zeros((len(dg.orivals), len(dg.tfvals) - 1))
    ds = np.zeros((len(dg.orivals), len(dg.tfvals) - 1))

    for i, trial in dg.peak[osi_cells].iterrows():
        os[trial.ori_dg, trial.tf_dg - 1] += 1

    for i, trial in dg.peak[dsi_cells].iterrows():
        ds[trial.ori_dg, trial.tf_dg - 1] += 1

    max_count = max(os.max(), ds.max())

    # Neuropil correction
    data_set = boc.get_ophys_experiment_data(569407590)
    csid = data_set.get_cell_specimen_ids()[0]

    time, demixed_traces = data_set.get_demixed_traces(
        cell_specimen_ids=[csid])
    _, neuropil_traces = data_set.get_neuropil_traces(cell_specimen_ids=[csid])

    results = estimate_contamination_ratios(demixed_traces[0],
                                            neuropil_traces[0])
    correction = demixed_traces[0] - results['r'] * neuropil_traces[0]
    _, corrected_traces = data_set.get_corrected_fluorescence_traces(
        cell_specimen_ids=[csid])

    # Running Speed and Motion Correction
    data_set = boc.get_ophys_experiment_data(512326618)
    dxcm, dxtime = data_set.get_running_speed()
    mc = data_set.get_motion_correction()

    assert True
コード例 #2
0
ファイル: buckets.py プロジェクト: amscanne/smache
 def shrink(self):
     return self.resize(os.max(self.size()-1, 0))